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In this paper we introduce the concept of a prime radical of an ideal of an L-ring L(, R) . Among 

various results pertaining to this concept, we prove here that prime radicals of an ideal   , its radical 

 , its semiprime radical S() and its prime radical P() , all coincide. Also we prove that for a 

primary ideal, its prime radical coincide with its radical. Moreover, we introduce the concept of primary 

decomposition and reduced primary decomposition of an ideal in an L-ring. We obtain a necessary and 

sufficient conditions for an ideal of an L-ring to have a primary decomposition. Some more results 

pertaining to the decomposition of an ideal are established. 
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ABSTRACT 
 

 

INTRODUCTION 
 

With this machinery at our disposal, in this paper, we have further introduced the concept of a 

prime radical of an ideal of an L -ring L(, R) . It is proved that the prime radicals of an ideal , 

its radical , its semiprime radical S () and its prime radical P() , are identical. It is also 

proved that the prime radical of an ideal of an L -ring is always a semiprime ideal. We have also 

proved that for a primary ideal of an L -ring, its radical, semiprime radical and prime radical 

coincide. We have established that semiprime radical of the prime radical of an ideal of L -ring is 

the prime radical of the ideal. 

PRIME IDEAL 
 

Definition 2.1 Let L(, R) be any L-ring. An ideal    of  is said to be a 

prime ideal of  if for all x, y  R , either 
 

(xy)  (x)  (y)  (x)  (y) or (xy) (x) (y)  (y) (x) . 


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Theorem 2.2 Let L(, R) be an L-ring. An ideal  of  is a prime ideal of  if and 

only if for each non-empty level subset t , either t  t , or t is a prime ideal 

of t . 
 

Proof. Let  be a prime ideal of . Suppose t is a non-empty level subset of 

such that t  t . t is an ideal of  t  . Let x, yt such that xy t . Then 

(xy)  t, (x)  t and (y)  t . Since  is a prime ideal of , either 
 

(x) (y)  (xy) (x) (y)  t or (y) (x)  (xy) (x) (y)  t . 
 

Thus either (x)  (x) (y)  t or (y) (y) (x)  t . That is, either x t or 

yt . Hence t is a prime ideal of t  . Conversely, suppose for each non-empty 

level subset t , either t  t or t is a prime ideal of t  . Let x, yR . Write 

(xy)  (x)  (y)  t . Then xy t , x t , yt . If t  t , then x, yt. . If 

t is a prime ideal of t , then either x t or yt . Suppose that x t . Then 

(x)  t implies that 
 
 
(x)  (y)  t  t  t  (xy)  (x)  (y) . 

 

Since  is an ideal of , we have 

(xy)  (x)  (y)  (x)  (y) . 
 

Thus (xy)  (x)  (y)  (x) (y) . Similarly if yt , then 
 

(xy)  (y)  (y)  (y)  (y) . 

Hence  is a prime ideal of .■ 
 

Theorem 2.3. Let L be a chain and L(, R) be an L-ring. A subring    of  is 

a prime ideal of  if and only if, for all x, yR 

(xy)  (x)  (y)  (x) (y)(y) (x). 
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Definition 2.4. Let L(, R) be an L-ring. An ideal    of  is said to be a 

semiprime ideal of  if 

(x
n 
)  (x)  (x) , 

 
 
x R & n Z

  . 
 

Theorem 2.5. Let L(, R) be an L-ring. Let    , be an ideal of . Then  is a 

semiprime ideal of  if and only if, for each non-empty level subset t either 

t  t or t is a semiprime ideal of t . 
 

Proof. Suppose  is a semiprime ideal of . Let t be a non-empty level subset 
 

such that t  t . Suppose that x 
2 
 with x t . Since  is a semiprime ideal 

of  , we have 

(x)  (x 
2 
) (x)  t  t  t . 

 

Hence x t . Thus t is a semiprime ideal of t . 
 

Conversely, suppose    is an ideal of  such that for each non-empty level 
 

subset t , either t  t or t is a semiprime ideal of t  . Let x R , n  Z
 . 

 

Write (x
n 
) (x)  t . Then (x

n 
)  t and (x)  t . Thus x 

n 
 and x t . If 

t  t , then x  t  .  If t is a semiprime ideal of t , then x  t  . Thus 

(x)  t  (x
n 
) (x). Since  is an ideal of , (x

n 
)  (x). Hence 

 

(x
n 
)  (x)  (x)  (x)  (x) . Thus 

 is a semiprime ideal of .■ 

(x
n 
)  (x)  (x) ,  x R, n  Z

 . Hence 

 

Theorem 2.6 Let L(, R) be an L-ring and  be a prime ideal of  . Then  is a 

semiprime ideal of  . 
 

Proof. Let x  R . We show that 

(x
n 
) (x)  (x) , 

 

 n  Z 
 . 

t 

t 
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



 
 

We prove the result by induction on n. For n=1, the result is obviously true. 

Assume that the result is true for n=k. Then 

ideal of  , we have either 

(x
k 
) (x)  (x) . Since  is prime 

(x
k 1 

)  (x
k 
)  (x)  (x

k 
) (x) or (x

k 1 
) (x

k 
) (x) (x) (x

k 
) . 

 

Since L(, R) is an L-ring, we have (x
k 
) (x) (x) . Thus 

 

 
 

Hence 

(x) (x
k 
)  (x) and (x

k 
) (x) (x) . 

 

(x
k 1 

) (x) (x). 

Thus  is a semiprime ideal of  .■ 

Definition 2.7. Let L be a complete lattice and 

 
 

 
L(, R) 

 

 

 
be an L-ring. Let  be an 

 

ideal of . The Radical of , denoted by , is defined by 

 
 

Clearly  





  . 

 
(x) 




nZ
(x 

n 
)  (x)



,  x  R . 

 

Theorem 2.8. Let L be a complete lattice and L(, R) be an L-ring. An ideal  of 
 

 is a semiprime ideal of  if and only if  . 
 

Proof. Suppose  is a semiprime ideal of . Then 
 

 
 

Thus 

(x
n 
)  (x)  (x) ,  x R, n  Z

 . 

 
 

Hence 

 
 

 . 

(x)  
nZ
(x 

n 
) (x) (x) , x R . 

 

Conversely, suppose that  . Then (x)  (x) , x R . Hence, 






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t 

t 

 

t 

t 

 

 
 

Let 

 
 

mZ







and 

 (x 
n 
)  (x) (x) , 

nZ



x R . Then 

 x  R . 

(x)  
nZ

(x 
n 
)  (x)  (x 

m 
)  (x) . 

 

Since  is an ideal of , (x
m 

)  (x). Thus 
 

 
 

Hence 

(x
m 

)  (x)  (x) (x) (x) . 
 

(x
m 

) (x)  (x) . Therefore  is a semiprime ideal of .■ 
 

Lemma 2.9. Let L be a complete lattice and L(, R) be an L-ring. Let  be an 

ideal of  and  has sup property. Then    t ,  t  L . 
 

Proof. Let x R . Since  has sup property, we have 
nZ

(x 
n 
)  (x 

m 
) for some 

mZ
 . Thus 

(x
m 

)  (x)   (x
n 
)  (x)  (x

k 
)  (x) , 

nZ 




k  Z
 . 

 

Hence  
 

(x
m 

) (x) 





nZ



(x 
n 
)  (x)(x

m 
)  (x) . 

 

Consequently 

 (x 
n 
)  (x) (x 

m 
)  (x) . 

nZ



Let x    t  . Then 

 
x 

k 



and 

 
x t 

 
for some 

 
k  Z

 . Thus 

 
(x) 




nZ
(x 

n 
)  (x) (x

k 
) (x) t  t  t . 

Hence x    and therefore t   . To prove the reverse inclusion, let 

x    . Then (x)  t . Hence 

t 

t 

t 

t 
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t 

t 

t 

t t 

t 

t 

t 

r 

r t t 

t 

t 

 

(x
m 

) (x)  
nZ
(x 

n 
) (x) (x) t . 

Thus x 
m 
 and x t . Consequently x  t  . Therefore    t .■ 

 

Theorem 2.10. Let R be a commutative ring and L be a complete lattice. Let 

L(, R) be an L-ring and  be an ideal of  and has sup property. Then is an 
 

ideal of 

Proof. Let 



 be a non-empty level subset. Let 

 

x, y 




and 

 

a t 

 

 
. Then by 

 

Lemma 2.9 x, y  t  . Hence there exist positive integers m and n such that 
 

x 
n 
 , y

m 
 and x, yt . Now (x)

n
  x

n
 or  x

n . Since  is an ideal of , by 

Theorem 1.6 the non-empty level subset t is an ideal of level subring t . Thus 

(x) 
n 
 . Consequently  x  and hence  x   . Now 

 

(x  y)
nm  

 x
nm 

 nx 
mn1 

y ....
n 
C x

nmr 
y

r  
	 y

nm . 
 

Since t is an ideal of t , we have n 
C x

nmr 
y

r 
 . Hence (x  y) 

nm 
 . 

Consequently (x  y)  t    . Now (xa ) 
n
  x 

n 
a 

n 
 and hence 

xa   t   

of .■ 

 . Thus   is an ideal of t . By Theorem 1.6, is an ideal 

 

Theorem 2.11. Let R be a commutative ring and L be a complete Heyting 

algebra. Let 

 . 

L(, R) be an L-ring and  be an ideal of  . Then is an ideal of 

 

Proof. Let x, y  R . Clearly (x)  (x) . Let m, n  Z 

 . Now 

 

n (x  y)
nm

  x
nm

 
nm C xnmi yi  

nm1 
nm C xnmi yi  ynm . 

 i 

i1 

	i 

in1 

n t 



t 

t 





t 

t 

t 

t 

t 
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Since is an ideal of  we have, 
 

(x
nmi

 y
i
 )  (x

nmi
 ) (y

i
 ) , 

(x
nmi

 y
i
 ) (x

nmi
 ) (y

i
 ) , 

 
 
i  1,2,..., n . 

 
i  n  1,..., n  m  i . 

 

Also, (x  y) (x) (y) as  is L-ring. Now 
 

((x  y)
nm

 )  (x
nm

 ) 
 n

 (xnmi yi )
 
 
nm1

 (x
nmi

 y
i
 )
 
 (y

nm
 ) . 

        


Therefore 

i1   in1 



((x  y) nm )  (x  y)  (x nm ) 
 n 

 (x nmi )  (yi ) 


   

i1 

nm1 


(x nmi )  (yi ) 

 (ymn )  (x)  (y)
     

 in1 

mn 





(xi )  (x) 

 
 mn 

((yi )  (y)



        

im 




Again, since  is an ideal of  , we have 

in1  

(Since 




(x
i
 )  (x),i  1,2,... ). 

 

(x
m1

)  (x) (x
m

 ) (x)  (x)  (x
m
 )  (x) . 

 

From this it follows that (x
mk

 )  (x)  (x
m
 )  (x) , k  Z 


 . Thus 

 

mn 


(xi )  (x) (xm )  (x). 

 
 

Similarly 

 
im 

mn 


( yi )  ( y) ( yn1)  ( y)  ( yn )  ( y) . 

 
 

Therefore 

 
in1 

((x  y)
nm 

)  (x  y)  (x
m 

)  (x) ( y
n 
)  ( y) . 



International Journal of Technology, Science and Engineering 

(IJTSE) 2017, Vol. No. 1, Issue No. I, Oct-Dec 

http://www.bharatpublication.com 

ISSN: 2457-1016 

49 

BHARAT PUBLICATION 

 

 



 

 





 
 

Now  

(x  y) 




kZ 
(x  y)

k
  (x  y)

(x  y)
nm

  (x  y) 

 (x
m
 )  (x) ( y

n
 )  (x) , 

 

 
m, n  Z 


 . 

 

Thus for an arbitrary but fixed n  Z

 , we have 

(x  y)  
mZ 
(x

m
 )  (x) ( y

n
 )  ( y)

 (x
m
 )  (x)  ( y

n
 )  ( y)

mZ 

(Since L is complete Heyting algebra) 

 (x)  ( y
n
 ) ( y). 

 

Again since L is complete Heyting algebra and n is arbitrary, we have 

(x  y)   
nZ 

(x)  ( y
n
 )  ( y)

 (x)    ( yn )  ( y)





Now 

nZ 

 (x)  ( y) . 

 

((xy)
n
 )  (xy)  (x

n
 y

n
 ) (x)  ( y) 

 

(x
n
 ) ( y

n
 ) (x) ( y) 

 

 
(Since  is an ideal of  ) 

 

 
Therefore 

 (x
n
 )  (x) ( y) 

 

(Since 
 
( y

n
 )  ( y) ) 

(xy)  
nZ 
((xy)

n
 )  (xy)


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 

 







 



 















 
nZ 
(x

n
 )  (x) ( y)

 (xn )  (x) ( y) 

nZ 

 

 
 (x) ( y) 



(Since L is complete Heyting algebra) 

 

Similarly (xy)  ( y)  (x) . Hence is an ideal of  .■ 
 

Theorem 2.12. Let L be a complete lattice and 

 be ideals of . Then 

L(, R) be an L-ring. Let  and 

 

    . 

Proof. Obvious. 
 

Theorem 2.13. Let R be a commutative ring and L be a complete Heyting 
 

algebra. Let L(, R) be an L-ring and  be an ideal of  . Then  . 
 

Proof. By Theorem 2.11, is an ideal of  . Since  , by the above 
 

theorem, we have   . To prove the reverse inclusion, let x  R . Now 

 
(x)   

nZ 

(x
n
 ) (x)

    
  
   (x ) (x )(x) 

nm n 

nZ    mZ 

    
  
   (x ) (x ) (x) . 

nm n 

nZ mZ 



(Since L is complete Heyting algebra) 
 

 
nZ 




mZ 

(x
nm 

) (x). (Since (x
n 
)  (x)) 



 




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 

 







 



 

Since for each n  Z 
 , 

mZ 
(x

nm 
) (x)  (x), we have 

 

(x) 




nZ 




mZ 

(x
nm 

) (x)


(x). 

 

Thus   . Consequently  .■ 
 

 

 

Theorem 2.18. Let R be a commutative ring and L be a completely distributive 

lattice. Let L(, R) be an L-ring. Let  and  be ideals of  . Then 
 

   . 
 

Proof. Let x  R . Now 

(x)  
nZ
()(x 

n 
) (x)  

nZ
(x 

n 
) (x

n 
) (x)

 
nZ 

(x 
n
 )  (x) (x 

n
 )  (x)

   (xn ) (x)   (xn ) (x)

nZ 

 
 nZ 




(Since L is completely distributive) 

 (x)  (x)    (x) . 
 

Thus    . 
 

Now, since  and  are ideals of  , By Theorem 2.17,  is an ideal of  . Also 
 

by Theorem 2.15, we have     . Therefore by Theorem 2.12,   . 
 

Similarly   . Thus      . Next, let x  R . Then 
 

(x) 



 ()(x 
n 
) (x)  

n1 

 (x
r 
) (x

nr 
)  (x)

 
. 

nZ n2 
 
  


 


 r1 

Now 



 

 

  
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 

 

      



    

   

     

        

  



 

n1


(x

r 
) (x

nr 
)  (x 

n1 
) (x) (x) (x

n1 
)

 
r1  

 (x
n1 

) (x)  (x
n1 

)  (x)

(Since L is completely distributive) 
 

= (x
n1 

)  (xn1 
) (Since (x

n1 
)  (x)) 

 

= ( )(x
n1 

) . 
 

Thus 
 

(x)   (  )(x n1 )  (x)
n2 

(   )(x) . Hence  . 
 

Consequently  .■ 
 

Theorem 2.19. Let R be a commutative ring and L be a complete Heyting 

algebra. Let 

Then 

L(, R) be an L-ring. Let  and  be ideals of  with (0)  (0) . 

   . 
 

Proof. By Theorem 2.11, and are ideals of  . By Theorem 2.16,  


and  are an ideals of  . Clearly    . Since  and 
 

 , we have    .  Thus by Theorem 2.12  . By 
 

Theorem 2.11, is an ideal of  . Thus,   . Since 
 

   , by Theorem 2.12 we have  . Similarly   . Therefore 
 

     . 
 

Thus by Theorem 2.12 and Theorem 2.13,   . Hence 
 

 .■ 





 

     

   

    

   



  
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Definition 2.20. Let L(, R) be an L-ring. An ideal    of  is said to be 

primary ideal of  if for all x, yR , we have either 
 

(x) (y)  (xy) (x) (y) 

or (y) (x) (xy) (x) (y) 

(1.1) 

(1.2) 
 

or (x
n 
) (x) (y

m 
) (y)  (xy) (x) (y) , (1.3) 

for some integers m,n > 1. 
 

Obviously, every prime ideal of an L-ring L(, R) is a primary ideal of . 
 

Lemma 2.21. Let R be a ring. An ideal I of R is primary if and only if, whenever 

xy I we have either 
 

x  I or yI or ( x 
n
 & ym 

I ), for some integers m,n>1. 
 

Proof. Suppose that the ideal I is primary. Let 

following three cases. 

xy I . Then we consider the 

case (i) x  I, y  I . 
 

Since I is a primary ideal and x I , we have y
m 
I for some positive integer m. 

Also m  1 , since y  I . Similarly, we have x 
n 
I for some integer n > 1. 

 

Case (ii) x I and either x
n 
I or y

n 
I for any integer n  1. 

 

Again, since I is a primary ideal and x I , we have y
m 
I for some integer m  1. 

We show that yI . Suppose y  I . Then m > 1. Therefore by the hypothesis 
 

x 
n 
 I for any integer n > 1. Since I is primary and yI, x

m 
I for some integer 

 

m  1. As x I , therefore m > 1. Hence x
m 
I for some integer m > 1, which is a 

contradiction. Thus yI . 
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t 

 
 

Case(iii) yI and either x 
n 
 I or y

n 
I for any integer n > 1. The proof of this 

part is similar to that of case (ii). 

To prove the converse part, suppose 

 

 
xy I 

 

 
and 

 
 
x I . Then either 

 
 
yI 

 

 
or there 

 

exists integers m, n  1 such that x 
n 
I and y

m 
I. Thus, in either case y

m 
I for 

 

some positive integer m. Similarly if 

Thus I is a primary ideal of R. ■ 

y  I , then x
n 
I for some positive integer n. 

Theorem 2.22. Let L(, R) be an L-ring and  be an ideal of  with    . Then 

 is a primary ideal of  if and only if for each non-empty level subset t , either 

t  t or t is a primary ideal of t . 
 

Proof. Suppose  is a primary ideal of  and t is a non-empty level subset such 

that t  t . Let xy t , x, yt . Then it follows that (xy) (x) (y) t . Since 

 is primary ideal of , one of the conditions (1.1), (1.2) and (1.3) hold. Now, if 

condition (1.1) holds then 

(x)  (x) (y)  (xy) (x) (y)  t . 
 

Thus 

 

 
Thus 

x t . If (1.2) holds, then 

(y)  (y) (x)  (xy) (x) (y)  t . 

yt . In case condition (1.3) is valid, we have 

(x
n 
)  (x) (y

m 
) (y)  (xy)  (x)  (y)  t 

 

for some integer m,n>1. 
 

Thus x
n 
, y

m 
  . Therefore, by Lemma 2.21,  is a primary ideal of t . 

 

Our next result shows that every semiprime ideal of an L-ring which is also 

primary is a prime ideal. ■ 

t 
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 

 
 

Theorem 2.23. Let L(, R) be an L-ring and  be a semiprime ideal of . If  is 

a primary ideal of , then  is a prime ideal of . 
 

Proof. Let x, yR . Since  is semiprime ideal of , we have 
 

 
 

Thus 

(x
n 
) (x)  (x) and (y

m 
) (y)  (y) , n, m  Z

 . 

 

(x
n 
)  (x)  (y

m 
)  (y) (x)  (y), n, m Z


 (1.4) 

 

Since  is a primary ideal of , one of the conditions (1.1), (1.2) and (1.3) holds. 

If condition (1.3) holds then for some integers r,s > 1, we have 

(x
r 
)  (x) (y

s 
) (y) (xy) (x) (y). 

From this alongwith (1.4), we have 

(x) (y) (x) (y) (x
r 
) (x) (y

s 
) (y) 

 

(xy) (x) (y) . 
 

This again gives us condition (1.1). Therefore, either condition (1.1) or (1.2) 

holds. Since  is an ideal of  , by Lemma 1.17, we have 

(xy)  (x)  ( y) (x)  ( y) 

Thus either, 

and (xy)  (x)  ( y)  ( y)  (x). 

 

(xy)  (x)  (y)  (x) (y) 

Therefore  is a prime ideal of .■ 

or (xy) (x) (y)  (y) (x) . 

 

Theorem 2.24. Let R be a commutative ring and L be a complete lattice. Let 

L(, R) be an L-ring  and   be a primary ideal of  and has sup property. Then 
 

is a prime ideal of . Also  . 
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Proof. By Theorem 2.10, is an ideal of  .Let x, yR . Since  has sup 
 

property, there exists mZ

 such that 

 
 

Now 

(xy)  
nZ

(xy)
n  
 (xy)  (x

m 
y

m 
) (xy) . (1.5) 

 
 

Hence 

(x)  
nZ

(x 
n 
) (x)(x

s 
) (x) , s  Z

 . 

 

(x) ( y)  (x
s
 ) (x) ( y) , 

Similarly 

s  Z
 . (1.6) 

(y)  (x)  (y
s 
)  (x)  (y) , s  Z


 (1.7) 

 

Since  is a primary ideal of , by Definition 2.20, we have either 

(x
m 

y
m 

) (x
m 

) (y
m 

)  (x
m 

) (y
m 

) 

 

or (x
m 

y
m 

) (x
m 

) (y
m 

)  (y
m 

) (x
m 

) 

 

or (x
m 

y
m 

) (x
m 

) (y
m 

)  (x
mk 

) (x
m 

)  (y
mr 

)  (y
m 

) 

(1.8) 
 

(1.9) 
 

(1.10) 
 

 
 

By (1.5), we have 

(xy) (x) (y)  (x
m 

y
m 

) (xy) (x) (y) 

 

 (x
m 

y
m 

) (x) (y) 

for some integers k,r > 1. 

 

 (x
m 

y
m 

)  (x
m 

)  (y
m 

)  (x)  (y) . 

If (1.8) holds, then 
 

(xy) (x) (y)  (x
m 

) (y
m 

)  (x)  (y) 

 (x 
m 

) (x)(y) 


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 (x) (y). (by (1.6)) 

If (1.9) holds, then 
 

(xy) (x) (y) (y
m 

)  (x
m 

)  (x)  (y) 

 

[(y
m 

) (x)] (y) 
 

 (y)  (y) . (by (1.7)) 
 

In case, condition (1.10) is valid, then 

(xy) (x) (y)  (x
mk 

) (x
m 

) (y
mr 

) (y
m 

) (x) (y) 

 

 (x
mk 

)  (y
mr 

)  (x)  (y) 

 (x
mk

 ) (x) ( y)( y
mr

 ) ( y) (x)

  (x) ( y)

 (x) (y) . 

( y) (x)



Hence is a prime ideal of . By Theorem 2.6, is a semiprime ideal and 
 

hence by Theorem 2.8,  .■ 
 

Definition 2.25. Let R be a commutative ring and L be a complete lattice. Let 

L(, R) be an L-ring. Let  be a primary ideal of  and  has sup property . Then 
 

is a prime ideal of  called the associated prime ideal of . 

Our next result shows that the associated prime ideal of  is the smallest prime 

ideal of  containing . 

Theorem 2.26. Let R be a commutative ring and L be a complete lattice. Let 

L(, R)  be an L-ring. Let  be a primary ideals of  and has sup property. Then 

the associated prime ideal of  is the smallest prime ideal of  containing . 

 


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





 
 

Proof. Suppose  is a prime ideal of  such that    . Since  is a prime ideal of 
 

,  is a semiprime ideal of . Hence by Theorem 2.8,  we have  . Now 
 

   implies that    .■ 
 

Theorem 2.27. Let R be a commutative ring and L be a complete chain. Let 

L(, R) be an L-ring. Let  and  be ideals of  such that      . Suppose 
 

that  has sup property and for a, b  R , we have 
 

(ab)  (a)  (ab) (b) . 
 

Then  is a primary ideal of  and   . 
 

Proof. By Theorem 2.10, 

three cases arise. 

is an ideal of  . Let a, b  R . Then the following 

Case (i) (ab) (a) . 
 

Then (ab)  (b). Now (b) (a)  (b) (b) (a) (ab) (a) (b) . 
 

Case (ii) (ab)  (a) and (ab)  (b) . 
 

Then (ab)  (a) . Now, we have 

(a)  (b) (a) (a) (b)  (ab) (a) (b) . 
 

Case (iii) (ab) (a) and (ab)  (b) . 
 

Since     , we have 

 
(ab)  (a) 



(a) 




nZ
(a 

n 
) (a) (a 

k 
) (a) , for some 

 
k  Z










Similarly 

 
 
(ab)  (b

m 
) (b), for some 

 
 
mZ

 . Thus 

(Since  has sup property). 

(ab) (a) (b)  (ab) (a) (b)(ab) (a) (b)







International Journal of Technology, Science and Engineering 

(IJTSE) 2017, Vol. No. 1, Issue No. I, Oct-Dec 

http://www.bharatpublication.com 

ISSN: 2457-1016 

59 

BHARAT PUBLICATION 

 

 

i 



  

i t 



i t  

j t k   t i 

i 



(a
k
 ) (a) (b) (b

m
 ) (a) (b)



 (a
k 
)  (a)  (b

m 
)  (b) , for some 

Thus  is a primary ideal of . 

k, mZ
  . 

To show that  , it is sufficient to show that  . Let a R . Firstly we 
 

show that (a
n 
)  (a), , n  Z

 . Suppose this is not the case. Then there exists 
 

k  Z

 such that (a

k 
)  (a). Let m be the smallest positive integer such that 

 

(a
m 

)  (a) . Since   , we have (a)  (a) . Thus m  2 . Now (a
m1

a)  (a) . 
 

By the given hypothesis, we have (a
m 

)  (a
m1 

) . Thus (a
m1 

)  (a
m 

)  (a) , 

which is a contradiction. So that (a 
n 
)  (a) , n  Z 


 . Therefore 

 
 
 

Hence 

 
 

 .■ 

 
(a)   (a 

n 
) (a)

nZ




nZ



(a
n 
)  (a) . 

Lemma 2.28. Let L be a complete lattice and L(, R) be an L-ring. Let   be a 

chain of prime ideals of . Then i is a prime ideal of . 
i 

 

Proof. i is an ideal of   Let 

i  


 be a non-empty level subset. Suppose 

i  i t 

 
that 

 
  i    t 

 
. By Lemma 1.14, 

 
  i      t 

 
. Since 

 
  i 


is non- 

 i  t  i t  i  i  t 

empty,   is non-empty for each i. Since for each i, i is prime ideal of , by 
 

Theorem 2.2, either   t 
or   is a prime ideal of t  . Let xy 

 
 
 

, 

 i  t 

x, yt . Then xy   for each i. If possible, 
 

x   (i )t 

i 

and y  (i )t . Then 
i 

there exists j,k such that x   and y  . Since   is a chain, we assume 

 



i 

i i 


t t 
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j t j t 





 

that    . Thus      . Hence x   and y ( ) . This contradicts 
j k j   t k t j   t j t 

that either    t or   is a prime ideal of t  . Thus, either 
 

x ( )      or y   . Hence  
 
 is a prime ideal of  . By 

 i    t i i  t  i  t 

i  i t i  i  t 

Theorem 2.2,  is a prime ideal of . 

Theorem 2.29. Let L be a complete lattice and 

 
 
L(, R) 

 

 
be an L-ring. Then, the 

intersection of an arbitrary family of semiprime ideals of  is a semiprime ideal of 

. 

Proof. Let   be a family of semiprime ideals of  . Then by Lemma 1.16, 
i i

i 

i

is an ideal of  . Let x  R, n  Z
 . Since for each i   , i is semiprime ideal 

of  , we have 

 

 
Now 

 

i (x
n
 )  (x)  i (x), 

 

 
 i . 

 

 i (x )  (x)    i (x )  (x) 
 i (x )  (x)

  n 

 i 

 n   
 i 




n 

i




 
i
 i (x)   i (x) . 




Thus i is a semiprime ideal of  .■ 
i

 i 



Definition 2.30. Let L(, R) be an L-ring and  be an ideal of . A prime ideal 

of  is said to be a minimal prime ideal of  (or an isolated prime ideal of ), if 

   and there is no prime ideal  of  such that  
 
 . 

 

Let L(, R) be an L-ring. Consider the L-subset  : R  L defined by 
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

 
 

 (x)   (x) , 
xR 

 x  R . 
 

Then  is a prime ideal of  called the minimal prime ideal of . 
 

Theorem 2.31. Let L be a complete lattice and L(, R) be an L-ring. Let  be an 

ideal of  and  be a prime ideal of  such that   . Then there exists a minimal 
 

prime ideal * of  such that  
* 
  . 

 

Proof. Let    |  is prime ideal of  and . The family  is non-empty, 

since . Define a relation of partial ordering  on , as follows 
 

1   2   if 2   1 . 
 

Consider a chain  in . Write 0  i . By Lemma 2.28, 0 

vi

is a prime ideal of 

. Since   i   for all vi   , we have 0  .Thus 0  . Also 0 i for 

all i . Therefore i  0 for all vi   . Hence 0 is an upper bound of the 

chain  in . By Zorn's Lemma,  has a maximal element * (say). That is, 


* 
  and if   with *   , then *   . Since *  , * is a prime ideal of 

 such that   
* 
 . To show that 

* 
is a minimal prime ideal of , let  be 

 

any prime ideal of  such that     
*
 . Then  and 

*
   . Since * is 

 

maximal element of , we have 
*
   Hence * is a minimal prime ideal of 



such that * 
 .■ 

 

Theorem 2.32. Let R be a commutative ring and L(, R) be an L-ring. Let  be 

a semiprime ideal of  and  be an ideal of . Then  is an ideal of . 
 

Proof. Let x, yR . Since  is a semiprime ideal of , we have 
 

(xy) ((xy) (xy))  (xy) 
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t t 

 
 

(x) (y(xy)) (xy) 

(x) (xy)  (y) (xy) 

(x) (y) (x) (y) 

(Since  is an ideal of ) 

(Since  is an ideal of  ) 

(Since  is an ideal of ) 

 (x) (y) (Since    ) 
 

Similarly (xy)  (y) (y) . Thus  is an ideal of .■ 
 

Corollary 2.33. Let R be a commutative ring and L(, R) be an L-ring. Let  be 

a prime ideal of  and  be an ideal of . Then  is an ideal of . 

Proof. Obvious. 
 

Definition 2.34. Let L(, R) be  an  L-ring.  An  ideal    of   is said to be 

irreducible if, whenever    , for some ideals  and  of , then either   


or   . An ideal  of  is said to be reducible if it is not irreducible. 

Definition 2.35. Let L(, R) be an L-ring and  be an ideal of . Let (t ,t )

be the family of distinct pairs of non-empty level subsets. Then  is said to be a 

prime ideal of  of rank r if there exists exactly r distinct pairs of level subsets, 

(t , t ) such that t is a prime ideal of  t and t  t for all other pairs. 
 

Clearly every prime ideal of  of rank r is a prime ideal of . 
 

Definition 2.36. Let L(, R) be an L-ring. An ideal  of  is said to be weakly 

prime ideal of  if for every pair of non-empty level subsets,  ,   with t  R , 

t is a prime ideal of t . 
 

Example 2.37. Let R be the ring of integers and L be a chain of four elements 

t3  t2  t1  t0 . Define  : R  L as follows : 
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

t 



t 







t 



if  3 

 

t0 



(x)  
t1

 

t2 


 3 

if x (23 ) 

if  x (22 )  (23 ) 

if  x (2)  (22 ) 

if  x  R  (2) . 

 
 

Then L(, R) is an L-ring. Define : R  L as follows : 
 

t 0 



(x)   
t1

 t 

if x (2
4
 ) 

if  x (2
3
 )  (2

4
 ) 

if  x (2
2
 )  (2

3
 ) 

 2 
 

x  R  (2
2
 ) . 

 

Clearly  is a weakly prime ideal of . Define :R  L as follows 
 

t 0 



(x)   
t1

 

t 2 


t 3

 

if x (2
4
 ) 

if x (2
3
 )  (2

4
 ) 

if x (2)  (2
3
 ) 

if x  R  (2) . 
 

Clearly  is a prime ideal of  of rank 2. Moreover,  is reducible since 

where  and  are ideals of  defined by 

  , 

t 0 

(x)  

t 



 3 

if x (2
3 
) 

if x (2)  (2
3 
) 

if x  R  (2) 

 

t 0 


 

t1 

if x (2
4
 ) 

if x (2
2
 )  (2

4
 ) 

(x)  
t 2 


t 3

 

if x (2)  (2
2
 ) 

if x R  (2) . 

2 
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t t t 

t t t 

t t t 

t 

t t t t 

t t 

t t 

t t 

t t t t t 

t 

t t t t 

t t 
 

 
 

Theorem 2.38. Let L be a chain and L(, R) be an L-ring. Let  be a prime ideal 

of rank 1 such that 
0 

 

irreducible in . 

is a prime ideal of 
0 

for some t 0  Im  . Then  is 

 

Proof. Let     , where   and  are ideals of . Then      and 
 

     , and hence t t t and t   t  t  ,  t L . Now 

 
0    
 (  ) t0

   t0   
 t0  

. By the hypothesis   
0
 is a prime ideal of  . Since every 

0 

prime ideal of a ring is irreducible, we have either 

show that  is irreducible, we prove that 

  
0 0 

or 
0 

  . Before we 
0 

t  t 
and t  t ,  t  L with t 0  t . 

Let t L with t 0  t . Since t 0  Im  ,  
 0 

. Thus  ,    , 
0 0 

. Since  is 

a prime ideal of  of rank 1 and 
0 

is a prime ideal of  , we have 
0 

t  t . By 

using t t t , we have t  t . Similarly t  t . In order to show that either 

   or    , we consider the following cases. 
 

Case (i)   
0 0 

and    . As we have 
0 0 

t  t  t ,  t  L , therefore 

t0   

 
 t0  

. We prove that t  t ,  t  Im  . If possible, there exists t1  Im  such 

that   . As we have 
1 1 

t  t  t ,  t  L , therefore  t1   

 
 t1  

. Since t  t , 

t L with t0  t , we have t1  t 0 . Thus    . Since  is a prime ideal of 
0 1 

and t1   

 
 t1   

 t1  
, by Theorem 2.2,  is a prime ideal of 

1 

 . Since  is a prime 
1 

ideal of  of rank 1 such that 
0 

is prime ideal of  , we have 
0 

   , 
1 0 

  
1 0 

 

. Since every prime ideal of a ring is irreducible, 
1 

is an irreducible ideal of  . 
1 

Now 
1 
  t1   

t1
 and  t1   


 
 t1  

. Therefore    . Thus 
1 1 

  
1 1 

 t 0   

  
 t 0   

  t1  
, 

t t 

t 

t 

t 

t 

t 

t 
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t t t t 

t t t 

t t t t 

t t 

t t t t t 

t 

t t t 

t t t 

t 


t 

 
 

which is a contradiction. Thus t  t , t  Im  and   . By Lemma 1.7, we 

have   . 
 

Case (ii)   
0 0 

and    . This case is similar to (i). In this case 
0 0 

  . 
 

Case (iii)   
0 0 

and 
0 

  . We show that either 
0 

 

t  t ,t  Im  or t  t 
,  t  Im  . 

 

If possible, there exists t1  Im  and t 2  Im  such that  
1 1 

and    . In 
2 2 

view of the fact that t t t and t t t ,  t  L , we have  t1   

 
 t1

 and 

t 2   

 
 t 2  

.  We  have  shown  above  that t  t and t  t   t  L with t 0  t . 

Therefore, we have t1  t 0 and t 2  t 0 . Since  is a prime ideal of  and 

t1   

 
 t1   

  t1   
, by Theorem 2.2,   

1
 is a prime ideal of  . Moreover, is a prime 

1 

ideal of rank 1 such that 
0 

is a prime ideal of  , and thus 
0 

   , 
1 0 

   . 
1 0 

Now, since every prime ideal of a ring is irreducible, 
1 

is irreducible ideal of  . 
1 

Thus from  
1    
  t1   

t1
 and  t1   


 
 t1  

, we have that     . Hence 
1 1 

    
1 1 0 

  t 0   

 
 t 2  

, since t 2  Im  and t 2  t 0 . Thus t 2  t1 . Similarly, we can 

show that t1   t 2  ,  which  is  a  contradiction.  Thus  we  have either t  t , 

t  Im  or t  t ,  t  Im  . We have either    or   . Thus  is 

irreducible in .■ 

Theorem 2.39. Let L be a complete chain and R be a commutative ring with 

unity. Let L(, R) be an L-ring and  be an ideal of  and has sup property . Let 

be a maximal ideal of  such that  is a maximal ideal of , 
0 0 

t 0  Im 

and   R . Then  is a primary ideal of . 
0 



t 

t 

t 


t 
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t 

t 

t t 

t0 t 

 
 

Proof. Let t be a non-empty level subset of t such that  t   
 t  . We show that 

t is primary ideal of t . Now, two cases arise : 

Case (i)    t . Then by Lemma 2.9, we have  t   t  . Let ab t , 
 

a, bt 

. 

and a t . Now b t   t  . Thus t is a primary ideal of  t 

Case (ii)     t  . By Theorem 1.12, we have     and 
0 

t  t  R . 

Therefore, we have  
  = 



 



 t 



 R  . 

By the hypothesis, 


is a maximal ideal of 
0 

 
, therefore 

0 

 
is a maximal 

ideal of R. Consequently in view of a result of classical ring theory t is a primary 

ideal of R. That is, t is a primary ideal of t .■ 
 

Theorem 2.40. Let L(, R) be an L-ring. Let  be a prime ideal of  and  be an 

ideal of . Then    is a prime ideal of . 
 

Proof. It is easy to verify that    is an ideal of . To show that    is a 
 

prime ideal of , let x, yR . Now 
 

( )(xy) (x) (y)  (xy) (xy) (x) (y) 

 (xy)  (x)  ( y) 

 
 

((xy)  (x)  (y)) 
 

 (xy) (x) (y) (x) (y) 

Since  is prime ideal of , we have either 

((x)  (x)) 

 

(xy)  (x)  (y) (x)  (y) or (xy) (x) (y)  (y) (x) . 
 

If (xy)  (x)  (y) (x) (y) , then we have 

t 

t t 

t t 

t 





t 0 

t 
t 
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



 

( )(xy) (x) (y)  (x) (y) (x) (y) 

 ( )(x) (y) 
 

Similarly, if (xy) (x) ( y) ( y) (x) , then we have 

( )(xy)  (x)  (y)  ( )(y)  (x). 
 

Thus    is a prime ideal of .■ 
 

Theorem 2.41. Let L be a complete lattice and L(, R) be an L-ring. Let  be a 
 

semiprime ideal of . Then for any ideal  of  with    , we have  . 
 

Proof. Since    is a semiprime ideal of , by Theorem 2.8, we have  . Since 
 

  , by Theorem 2.12, we have   .■ 
 

Corollary 2.42. Let L be a complete lattice and L(, R) be an L-ring. Let  be an 
 

ideal of . Then  and 

Proof. Obvious. 
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