PRIME IDEAL, SEMIPRIME IDEAL AND PRIMARY IDEAL OF L-SUBRING

Gunjan Bansal

Research Scholar, Calorx Teachers' University, Ahmedabad, Gujarat

ABSTRACT

In this paper we introduce the concept of a prime radical of an ideal of an L-ring $L(\mu, R)$. Among various results pertaining to this concept, we prove here that prime radicals of an ideal η , its radical $\sqrt{\eta}$, its semiprime radical $S(\eta)$ and its prime radical $P(\eta)$, all coincide. Also we prove that for a primary ideal, its prime radical coincide with its radical. Moreover, we introduce the concept of primary decomposition and reduced primary decomposition of an ideal in an L-ring. We obtain a necessary and sufficient conditions for an ideal of an L-ring to have a primary decomposition. Some more results pertaining to the decomposition of an ideal are established.

INTRODUCTION

With this machinery at our disposal, in this paper, we have further introduced the concept of a prime radical of an ideal of an *L*-ring $L(\mu, R)$. It is proved that the prime radicals of an ideal η , its radical $\sqrt{\eta}$, its semiprime radical $S(\eta)$ and its prime radical $P(\eta)$, are identical. It is also proved that the prime radical of an ideal of an *L*-ring is always a semiprime ideal. We have also proved that for a primary ideal of an *L*-ring, its radical, semiprime radical and prime radical coincide. We have established that semiprime radical of the prime radical of an ideal of *L*-ring is the prime radical of the ideal.

PRIME IDEAL

Definition 2.1 Let $L(\mu, R)$ be any L-ring. An ideal $\eta \neq \mu$ of μ is said to be a *prime* ideal of μ if for all $x, y \in R$, either

$$\eta(xy) \wedge \mu(x) \wedge \mu(y) = \eta(x) \wedge \mu(y)$$
 Or $\eta(xy) \wedge \mu(x) \wedge \mu(y) = \eta(y) \wedge \mu(x)$.

Theorem 2.2 Let $L(\mu, R)$ be an L-ring. An ideal η of μ is a prime ideal of μ if and only if for each non-empty level subset η_t , either $\eta_t = \mu_t$, or η_t is a prime ideal of μ_t .

Proof. Let η be a prime ideal of μ . Suppose η_t is a non-empty level subset of η such that $\eta_t \neq \mu_t$. η_t is an ideal of μ_t . Let $x, y \in \mu_t$ such that $xy \in \eta_t$. Then $\eta(xy) \ge t, \mu(x) \ge t$ and $\mu(y) \ge t$. Since η is a prime ideal of μ_t either

 $\eta(x) \land \mu(y) = \eta(xy) \land \mu(x) \land \mu(y) \ge t \text{ or } \eta(y) \land \mu(x) = \eta(xy) \land \mu(x) \land \mu(y) \ge t \text{ .}$

Thus either $\eta(x) \ge \eta(x) \land \mu(y) \ge t$ or $\eta(y) \ge \eta(y) \land \mu(x) \ge t$. That is, either $x \in \eta_t$ or $y \in \eta_t$. Hence η_t is a prime ideal of μ_t . Conversely, suppose for each non-empty level subset η_t , either $\eta_t = \mu_t$ or η_t is a prime ideal of μ_t . Let $x, y \in R$. Write $\eta(xy) \land \mu(x) \land \mu(y) = t$. Then $xy \in \eta_t$, $x \in \mu_t$, $y \in \mu_t$. If $\eta_t = \mu_t$, then $x, y \in \eta_t$. If η_t is a prime ideal of μ_t , then either $x \in \eta_t$ or $y \in \eta_t$. Suppose that $x \in \eta_t$. Then $\eta(x) \ge t$ implies that

$$\eta(x) \wedge \mu(y) \ge t \wedge t = t = \eta(xy) \wedge \mu(x) \wedge \mu(y)$$
.

Since η is an ideal of μ , we have

 $\eta(xy) \wedge \mu(x) \wedge \mu(y) \geq \eta(x) \wedge \mu(y)$.

Thus $\eta(xy) \wedge \mu(x) \wedge \mu(y) = \eta(x) \wedge \mu(y)$. Similarly if $y \in \eta_t$, then

$$\eta(xy) \wedge \mu(y) \wedge \mu(y) = \eta(y) \wedge \mu(y)$$
.

Hence η is a prime ideal of μ .

Theorem 2.3. Let *L* be a chain and $L(\mu, R)$ be an *L*-ring. Asubring $\eta \neq \mu$ of μ is a prime ideal of μ if and only if, for all $x, y \in R$

$$\eta(xy) \wedge \mu(x) \wedge \mu(y) = \left[\eta(x) \wedge \mu(y)\right] \vee \left[\eta(y) \wedge \mu(x)\right].$$

International Journal of Technology, Science and Engineering (IJTSE) 2017, Vol. No. 1, Issue No. I, Oct-Dec

ISSN: 2457-1016

Definition 2.4. Let $L(\mu, R)$ be an L-ring. An ideal $\eta \neq \mu$ of μ is said to be a *semiprime* ideal of μ if

$$\eta(x^n) \wedge \mu(x) = \eta(x), \forall x \in R \& \forall n \in Z^+$$
.

Theorem 2.5. Let $L(\mu, R)$ be an L-ring. Let $\eta \neq \mu$, be an ideal of μ . Then η is a semiprime ideal of μ if and only if, for each non-empty level subset η_t either $\eta_t = \mu_t$ or η_t is a semiprime ideal of μ_t .

Proof. Suppose η is a semiprime ideal of μ . Let η_t be a non-empty level subset such that $\eta_t \neq \mu_t$. Suppose that $x^2 \in \eta_t$ with $x \in \mu_t$. Since η is a semiprime ideal of μ , we have

$$\eta(x) = \eta(x^2) \land \mu(x) \ge t \land t = t.$$

Hence $x \in \eta_t$. Thus η_t is a semiprime ideal of μ_t .

Conversely, suppose $\eta \neq \mu$ is an ideal of μ such that for each non-empty level subset η_t , either $\eta_t = \mu_t$ or η_t is a semiprime ideal of μ_t . Let $x \in R$, $n \in Z^+$. Write $\eta(x^n) \land \mu(x) = t$. Then $\eta(x^n) \ge t$ and $\mu(x) \ge t$. Thus $x^n \in \eta_t$ and $x \in \mu_t$. If $\eta_t = \mu_t$, then $x \in \eta_t$. If η_t is a semiprime ideal of μ_t , then $x \in \eta_t$. Thus $\eta(x) \ge t = \eta(x^n) \land \mu(x)$. Since η is an ideal of μ , $\eta(x^n) \ge \eta(x)$. Hence $\eta(x^n) \land \mu(x) \ge \eta(x) \land \mu(x) = \eta(x)$. Thus $\eta(x^n) \land \mu(x) = \eta(x)$, $\forall x \in R, n \in Z^+$. Hence η is a semiprime ideal of μ .

Theorem 2.6 Let $L(\mu, R)$ be an L-ring and η be a prime ideal of μ . Then η is a semiprime ideal of μ .

Proof. Let $x \in R$. We show that

$$\eta(x^n) \wedge \mu(x) = \eta(x) , \qquad \forall n \in Z^+.$$

ISSN: 2457-1016

We prove the result by induction on n. For n=1, the result is obviously true. Assume that the result is true for n=k. Then $\eta(x^k) \land \mu(x) = \eta(x)$. Since η is prime ideal of μ , we have either

$$\eta(x^{k+1}) \wedge \mu(x^k) \wedge \mu(x) = \eta(x^k) \wedge \mu(x) \text{ or } \eta(x^{k+1}) \wedge \mu(x^k) \wedge \mu(x) = \eta(x) \wedge \mu(x^k).$$

Since $L(\mu, R)$ is an L-ring, we have $\mu(x^k) \ge \mu(x) \ge \eta(x)$. Thus

$$\eta(x) \wedge \mu(x^k) = \eta(x)$$
 and $\mu(x^k) \wedge \mu(x) = \mu(x)$.

Hence

$$\eta(x^{k+1}) \wedge \mu(x) = \eta(x).$$

Thus η is a semiprime ideal of μ .

Definition 2.7. Let L be a complete lattice and $L(\mu, R)$ be an L-ring. Let η be an ideal of μ . The *Radical* of η , denoted by $\sqrt{\eta}$, is defined by

$$\sqrt{\eta}(x) = \bigvee_{n \in Z^*} \left[\eta(x^n) \wedge \mu(x) \right]$$
 , $\forall x \in R$.

Clearly $\eta \subseteq \sqrt{\eta} \subseteq \mu$.

Theorem 2.8. Let *L* be a complete lattice and $L(\mu, R)$ be an *L*-ring. An ideal η of μ is a semiprime ideal of μ if and only if $\sqrt{\eta} = \eta$.

Proof. Suppose η is a semiprime ideal of μ . Then

$$\eta(x^n) \wedge \mu(x) = \eta(x)$$
, $\forall x \in \mathbb{R}, \forall n \in \mathbb{Z}^+$.

Thus

$$\sqrt{\eta}(x) = \bigvee_{n \in Z^+} \left[\eta(x^n) \wedge \mu(x) \right] = \eta(x), \ \forall x \in \mathbb{R}.$$

Hence $\sqrt{\eta} = \eta$.

Conversely, suppose that $\sqrt{\eta}=\eta.$ Then $\sqrt{\eta}(x)=\eta(x)\,,\,\,\forall x\in R$. Hence,

ISSN: 2457-1016

(IJTSE) 2017, Vol. No. 1, Issue No. I, Oct-Dec

$$\bigvee_{n\in Z^*} \left[\eta(x^n) \wedge \mu(x) \right] = \eta(x), \quad \forall \ x \in R \ .$$

Let $m\!\in\! Z^{\scriptscriptstyle +}$ and $x\in\! R$.Then

$$\eta(x) = \bigvee_{n \in \mathbb{Z}^+} \left[\eta(x^n) \land \mu(x) \right] \ge \eta(x^m) \land \mu(x) \text{ .}$$

Since η is an ideal of μ , $\eta(x^m) \ge \eta(x)$. Thus

$$\eta(x^m) \wedge \mu(x) \ge \eta(x) \wedge \mu(x) = \eta(x)$$
.

Hence $\eta(x^m) \land \mu(x) = \eta(x)$. Therefore η is a semiprime ideal of μ .

Lemma 2.9. Let L be a complete lattice and $L(\mu, R)$ be an L-ring. Let η be an ideal of μ and η has sup property. Then $(\sqrt{\eta})_t = \sqrt{\eta_t} \cap \mu_t$, $\forall t \in L$.

Proof. Let $x \in R$. Since η has sup property, we have $\bigvee_{n \in Z^+} \eta(x^n) = \eta(x^m)$ for some $m \in Z^+$. Thus

$$\eta(x^m) \wedge \mu(x) = \left[\bigvee_{n \in Z^+} \eta(x^n) \right] \mu(x) \ge \eta(x^k) \wedge \mu(x) , \qquad \forall k \in Z^+.$$

Hence

$$\eta(x^{m}) \wedge \mu(x) \geq \bigvee_{n \in Z^{*}} \left[\eta(x^{n}) \wedge \mu(x) \right] \geq \eta(x^{m}) \wedge \mu(x).$$

Consequently

$$\bigvee_{n\in Z^+} \left[\eta(x^n) \wedge \mu(x)\right] = \eta(x^m) \wedge \mu(x) .$$

Let $x \in \sqrt{\eta_t} \cap \mu_t$. Then $x^k \in \eta_t$ and $x \in \mu_t$ for some $k \in Z^+$. Thus

$$\sqrt{\eta}(x) = \bigvee_{n \in \mathbb{Z}^{+}} \left[\eta(x^{n}) \land \mu(x) \right] \ge \eta(x^{k}) \land \mu(x) \ge t \land t = t$$

Hence $x \in (\sqrt{\eta})_t$ and therefore $\sqrt{\eta_t} \cap \mu_t \subseteq (\sqrt{\eta})_t$. To prove the reverse inclusion, let $x \in (\sqrt{\eta})_t$. Then $\sqrt{\eta}(x) \ge t$. Hence

ISSN: 2457-1016

$$\eta(x^m) \wedge \mu(x) = \bigvee_{n \in Z^*} \left[\eta(x^n) \wedge \mu(x) \right] = \sqrt{\eta}(x) \ge t$$
.

Thus $x^m \in \eta$ and $x \in \mu_t$. Consequently $x \in \sqrt{\eta_t} \cap \mu_t$. Therefore $\left(\sqrt{\eta}\right)_t \subseteq \sqrt{n_t} \cap \mu_t$.

Theorem 2.10. Let *R* be a commutative ring and *L* be a complete lattice. Let $L(\mu, R)$ be an *L*-ring and η be an ideal of μ and has sup property. Then $\sqrt{\eta}$ is an ideal of μ .

Proof. Let $(\sqrt{\eta})_t$ be a non-empty level subset. Let $x, y \in (\sqrt{\eta})_t$ and $a \in \mu_t$. Then by Lemma 2.9 $x, y \in \sqrt{\eta_t} \cap \mu_t$. Hence there exist positive integers m and n such that $x^n \in \eta$, $y^m \in \eta_t$ and $x, y \in \mu_t$. Now $(-x)^n = x^n$ or $-x^n$. Since η is an ideal of μ , by Theorem 1.6 the non-empty level subset η_t is an ideal of level subring μ_t . Thus $(-x)^n \in \eta_t$. Consequently $-x \in \sqrt{\eta_t}$ and hence $-x \in (\sqrt{\eta})_t$. Now

$$(x + y)^{n+m} = x^{n+m} + nx^{m+n-1}y + \dots^{n}C_{r}x^{n+m-r}y^{r} + \Box + y^{n+m}.$$

Since η_t is an ideal of μ_t , we have ${}^{n}C_{r}x^{n+m-r}y^{r} \in \eta_{t}$. Hence $(x + y)^{n+m} \in \eta_{t}$. Consequently $(x + y) \in \sqrt{\eta_{t}} \cap \mu_{t} = (\sqrt{\eta})_{t}$. Now $(xa)^{n} = x^{n}a^{n} \in \eta_{t}$ and hence $xa \in \sqrt{\eta_{t}} \cap \mu_{t} = (\sqrt{\eta})_{t}$. Thus $(\sqrt{\eta})_{t}$ is an ideal of μ_{t} . By Theorem 1.6, $\sqrt{\eta}$ is an ideal of μ .

Theorem 2.11. Let R be a commutative ring and L be a complete Heyting algebra. Let $L(\mu, R)$ be an L-ring and η be an ideal of μ . Then $\sqrt{\eta}$ is an ideal of μ .

Proof. Let $x, y \in R$. Clearly $\sqrt{\eta}(-x) = \sqrt{\eta}(x)$. Let $m, n \in Z^+$. Now

$$(x+y)^{n+m} = x^{n+m} + \sum_{i=1}^{n} \sum_{i=1}^{n+m} C x^{n+m-i} y^{i} + \sum_{i=n+1}^{n+m-1} \sum_{i=n+1}^{n+m} C x^{n+m-i} y^{i} + y^{n+m} .$$

ISSN: 2457-1016

Since η is an ideal of μ we have,

$$\begin{split} &\eta(x^{n+m-i}y^i) \geq \eta(x^{n+m-i}) \wedge \mu(y^i), \qquad \forall i = 1, 2, ..., n . \\ &\eta(x^{n+m-i}y^i) \geq \mu(x^{n+m-i}) \wedge \eta(y^i), \qquad \forall i = n+1, ..., n+m-i . \end{split}$$

Also,
$$\mu(x + y) \ge \mu(x) \land \mu(y)$$
 as μ is L-ring. Now
 $\eta((x + y)^{n+m}) \ge \eta(x^{n+m}) \land \left\{ \land \eta^{\left(x^{n+m-i} y^{i}\right)} \right\} \land \left\{ \land \eta^{\left(x^{n+m-i} y^{i}\right)} \right\} \land \eta(y^{n+m}) \land \left\{ \land \eta^{\left(x^{n+m-i} y^{i}\right)} \right\} \land \eta(y^{n+m}) \land \left\{ \land \eta^{\left(x^{n+m-i} y^{i}\right)} \right\} \land \eta(y^{n+m}) \land \left\{ \land \eta^{\left(x^{n+m-i} y^{i}\right)} \right\}$

Therefore

(Since $\mu(x^i) \ge \mu(x), \forall i = 1, 2, ...$).

Again, since η is an ideal of μ , we have

$$\eta(x^{m+1}) \wedge \mu(x) \ge \eta(x^m) \wedge \mu(x) \wedge \mu(x) = \eta(x^m) \wedge \mu(x) .$$

From this it follows that
$$\eta(x^{m+k}) \land \mu(x) \ge \eta(x^m) \land \mu(x)$$
, $\forall k \in Z^+$. Thus
$$\bigwedge_{i=m}^{m+n} \left(\begin{array}{c} (x^i) \land \mu(x) \\ \end{pmatrix} = \eta(x^m) \land \mu(x). \right)$$

Similarly

$$\bigwedge_{i=n+1}^{m+n} \left(\eta^{(y^{i})} \wedge \mu(y) \right) = \eta(y^{n+1}) \wedge \mu(y) \ge \eta(y^{n}) \wedge \mu(y) .$$

Therefore

$$\eta((x+y)^{n+m}) \wedge \mu(x+y) \ge \left[\eta(x^m) \wedge \mu(x)\right] \wedge \left[\eta(y^n) \wedge \mu(y)\right].$$

(IJTSE) 2017, Vol. No. 1, Issue No. I, Oct-Dec

ISSN: 2457-1016

Now

$$\begin{split} \sqrt{\eta}(x+y) &= \bigvee_{k \in Z^+} \left[\eta(x+y)^k \wedge \mu(x+y) \right] \\ &\geq \left((x+y)^{n+m} \right) \wedge \mu(x+y) \\ &\geq \left\{ \eta(x^m) \wedge \mu(x) \right\} \wedge \left\{ \eta(y^n) \wedge \mu(x) \right\}, \ \forall m, n \in Z^+. \end{split}$$

Thus for an arbitrary but fixed $\ n \in Z^{\scriptscriptstyle +}$, we have

$$\sqrt{\eta}(x+y) \ge \bigvee_{m \in Z^+} \left\{ \left(\eta(x^m) \land \mu(x) \right) \land \left(\eta(y^n) \land \mu(y) \right) \right\}$$
$$= \left\{ \bigvee_{m \in Z^+} \left(\eta(x^m) \land \mu(x) \right) \right\} \land \left(\eta(y^n) \land \mu(y) \right)$$

(Since L is complete Heyting algebra)

$$= \sqrt{\eta}(x) \wedge \Big(\eta(y^n) \wedge \mu(y) \Big).$$

Again since L is complete Heyting algebra and n is arbitrary, we have

$$\begin{split} \sqrt{\eta}(x+y) &\geq \bigvee_{n \in Z^+} \left\{ \sqrt{\eta}(x) \wedge \left(\eta(y^n) \wedge \mu(y) \right) \right\} \\ &= \sqrt{\eta}(x) \wedge \left\{ \bigvee_{n \in Z^+} \left(\eta(y^n) \wedge \mu(y) \right) \right\} \\ &= \sqrt{\eta}(x) \wedge \sqrt{\eta}(y) \,. \end{split}$$

Now

$$\eta((xy)^{n}) \land \mu(xy) \ge \eta(x^{n} y^{n}) \land \mu(x) \land \mu(y)$$

$$\ge \eta(x^{n}) \land \mu(y^{n}) \land \mu(x) \land \mu(y) \text{ (Since } \eta \text{ is an ideal of } \mu \text{)}$$

$$= \left(\eta(x^{n}) \land \mu(x)\right) \land \mu(y) \text{ (Since } \mu(y^{n}) \ge \mu(y) \text{)}$$

Therefore

$$\sqrt{\eta}(xy) = \bigvee_{n \in Z^+} \left\{ \eta((xy)^n) \land \mu(xy) \right\}$$

BHARAT PUBLICATION

49

ISSN: 2457-1016

(IJTSE) 2017, Vol. No. 1, Issue No. I, Oct-Dec

$$\geq \bigvee_{n \in Z^+} \left\{ \left(\eta(x^n) \land \mu(x) \right) \land \mu(y) \right\}$$
$$= \left\{ \bigvee_{n \in Z^+} \left(\eta(x^n) \land \mu(x) \right) \land \mu(y) \right\}$$

(Since L is complete Heyting algebra)

$$=\sqrt{\eta}(x)\wedge\mu(y)$$

Similarly $\sqrt{\eta}(xy) \ge \sqrt{\eta}(y) \land \mu(x)$. Hence $\sqrt{\eta}$ is an ideal of μ .

Theorem 2.12. Let *L* be a complete lattice and $L(\mu, R)$ be an *L*-ring. Let η and θ be ideals of μ . Then

$$\eta \subseteq \theta \Rightarrow \sqrt{\eta} \subseteq \sqrt{\theta}$$

Proof. Obvious.

Theorem 2.13. Let *R* be a commutative ring and *L* be a complete Heyting algebra. Let $L(\mu, R)$ be an *L*-ring and η be an ideal of μ . Then $\sqrt{\sqrt{\eta}} = \sqrt{\eta}$.

Proof. By Theorem 2.11, $\sqrt{\eta}$ is an ideal of μ . Since $\eta \subseteq \sqrt{\eta}$, by the above theorem, we have $\sqrt{\eta} \subseteq \sqrt{\sqrt{\eta}}$. To prove the reverse inclusion, let $x \in R$. Now

$$\sqrt{\sqrt{\eta}}(x) = \bigvee_{n \in Z^{+}} \left\{ \sqrt{\eta}(x^{n}) \land \mu(x) \right\}$$
$$= \bigvee_{+} \bigwedge_{n \in Z} \left[\eta(x_{nm}) \land \mu(x_{n}) \right] \land \mu(x)$$
$$= \bigvee_{+} \bigwedge_{n \in Z} \left[\eta(x_{nm}) \land \mu(x_{n}) \land \mu(x) \right]$$
$$= \bigvee_{+} \bigwedge_{n \in Z} \left[\eta(x_{nm}) \land \mu(x_{n}) \land \mu(x) \right]$$

(Since L is complete Heyting algebra)

$$= \bigvee_{n \in Z^+} \left\{ \bigvee_{m \in Z^+} \left[\eta(x^{nm}) \wedge \mu(x) \right] \right\}.$$
 (Since $\mu(x^n) \ge \mu(x)$)

Since for each $n \in Z^+$, $\bigvee_{m \in Z^+} \left[\eta(x^{nm}) \land \mu(x) \right] \le \sqrt{\eta}(x)$, we have $\sqrt{\sqrt{\eta}}(x) = \bigvee_{n \in Z^+} \left\{ \bigvee_{m \in Z^+} \left[\eta(x^{nm}) \land \mu(x) \right] \right\} \le \sqrt{\eta}(x).$

Thus $\sqrt{\sqrt{\eta}} \subseteq \sqrt{\eta}$. Consequently $\sqrt{\sqrt{\eta}} = \sqrt{\eta}$.

Theorem 2.18. Let *R* be a commutative ring and *L* be a completely distributive lattice. Let $L(\mu, R)$ be an *L*-ring. Let η and θ be ideals of μ . Then $\sqrt{\eta \cap \theta} = \sqrt{\eta} \cap \sqrt{\theta} = \sqrt{\eta \theta}$.

Proof. Let $x \in R$. Now

$$\begin{split} \sqrt{\eta \cap \theta}(\mathbf{x}) &= \bigvee_{\mathbf{n} \in Z^+} \left[(\eta \cap \theta)(\mathbf{x}^n) \wedge \mu(\mathbf{x}) \right] = \bigvee_{\mathbf{n} \in Z^+} \left[\eta(\mathbf{x}^n) \wedge \theta(\mathbf{x}^n) \wedge \mu(\mathbf{x}) \right] \\ &= \bigvee_{n \in Z^+} \left\{ \left[\eta(x^n) \wedge \mu(x) \right] \wedge \left[\theta(x^n) \wedge \mu(x) \right] \right\} \\ &= \begin{cases} \bigvee_{n \in Z^+} \left[\eta(x^n) \wedge \mu(x) \right] \\ & & & \\ \end{pmatrix} \wedge \left[\theta(x^n) \wedge \mu(x) \right] \end{cases} \end{split}$$

(Since L is completely distributive)

$$= \sqrt{\eta}(x) \wedge \sqrt{\theta}(x) = \left(\sqrt{\eta} \cap \sqrt{\theta}\right)(x) \ .$$

Thus $\sqrt{\eta \bigcap \theta} \!=\! \sqrt{\eta} \bigcap \sqrt{\theta}$.

Now, since η and θ are ideals of μ , By Theorem 2.17, $\eta\theta$ is an ideal of μ . Also by Theorem 2.15, we have $\eta\theta \subseteq \eta\mu \subseteq \eta$. Therefore by Theorem 2.12, $\sqrt{\eta\theta} \subseteq \sqrt{\eta}$. Similarly $\sqrt{\eta\theta} \subseteq \sqrt{\theta}$. Thus $\sqrt{\eta\theta} \subseteq \sqrt{\eta} \cap \sqrt{\theta} = \sqrt{\eta \cap \theta}$. Next, let $x \in R$. Then $\eta\theta(x) = \vee \left[(\eta\theta)(x^n) \wedge \mu(x)\right] \ge \vee \int_{n \ge 2}^{n-1} \left((x^r) \wedge \theta(x^{n-r}) \right)^2 \wedge \mu(x)^2$.

Now

http://www.bharatpublication.com

(IJTSE) 2017, Vol. No. 1, Issue No. I, Oct-Dec

$$\sum_{r=1}^{n-1} (\mathbf{x}^{r}) \wedge \theta(\mathbf{x}^{n-r})] \geq \left[\eta(\mathbf{x}^{n-1}) \wedge \theta(\mathbf{x}) \right] \vee \left[\eta(\mathbf{x}) \wedge \theta(\mathbf{x}^{n-1}) \right]$$
$$= \left[\eta(\mathbf{x}^{n-1}) \vee \eta(\mathbf{x}) \right] \wedge \left[\theta(\mathbf{x}^{n-1}) \vee \theta(\mathbf{x}) \right]$$

(Since L is completely distributive)

$$= \eta(x^{n-1}) \land \theta(x^{n-1}) \quad \text{(Since } \eta(x^{n-1}) \ge \eta(x)\text{)}$$
$$= (\eta \bigcap \theta)(x^{n-1}).$$

Thus $\sqrt{\eta\theta}(x) \ge \bigvee_{n\ge 2} \left\{ (\eta \cap \theta)(x^{n-1}) \land \mu(x) \right\} = \sqrt{(\eta \cap \theta)}(x)$. Hence $\sqrt{\eta \cap \theta} \subseteq \sqrt{\eta\theta}$. Consequently $\sqrt{\eta\theta} = \sqrt{\eta \cap \theta}$.

Theorem 2.19. Let *R* be a commutative ring and *L* be a complete Heyting algebra. Let $L(\mu, R)$ be an *L*-ring. Let η and θ be ideals of μ with $\eta(0) = \theta(0)$. Then

$$\sqrt{\eta} + \sqrt{ heta} \subseteq \sqrt{\sqrt{\eta} + \sqrt{ heta}} = \sqrt{\eta + heta}$$
 .

Proof. By Theorem 2.11, $\sqrt{\eta}$ and $\sqrt{\theta}$ are ideals of μ . By Theorem 2.16, $\eta + \theta$ and $\sqrt{\eta} + \sqrt{\theta}$ are an ideals of μ . Clearly $\sqrt{\eta} + \sqrt{\theta} \subseteq \sqrt{\sqrt{\eta} + \sqrt{\theta}}$. Since $\eta \subseteq \sqrt{\eta}$ and $\theta \subseteq \sqrt{\theta}$, we have $\eta + \theta \subseteq \sqrt{\eta} + \sqrt{\theta}$. Thus by Theorem 2.12 $\sqrt{\eta + \theta} \subseteq \sqrt{\sqrt{\eta} + \sqrt{\theta}}$. By Theorem 2.11, $\sqrt{\eta + \theta}$ is an ideal of μ . Thus, $\sqrt{\eta + \theta} + \sqrt{\eta + \theta} = \sqrt{\eta + \theta}$. Since $\eta \subseteq \eta + \theta$, by Theorem 2.12 we have $\sqrt{\eta} \subseteq \sqrt{\eta + \theta}$. Similarly $\sqrt{\theta} \subseteq \sqrt{\eta + \theta}$. Therefore $\sqrt{\eta} + \sqrt{\theta} \subseteq \sqrt{\eta + \theta} + \sqrt{\eta + \theta} = \sqrt{\eta + \theta}$.

Thus by Theorem 2.12 and Theorem 2.13, $\sqrt{\sqrt{\eta} + \sqrt{\theta}} \subseteq \sqrt{\sqrt{\eta} + \theta} = \sqrt{\eta} + \theta$. Hence $\sqrt{\sqrt{\eta} + \sqrt{\theta}} = \sqrt{\eta} + \theta$.

(IJTSE) 2017, Vol. No. 1, Issue No. I, Oct-Dec

ISSN: 2457-1016

Definition 2.20. Let $L(\mu, R)$ be an L-ring. An ideal $\eta \neq \mu$ of μ is said to be primary ideal of μ if for all $x, y \in R$, we have either

$$\eta(x) \land \mu(y) \ge \eta(xy) \land \mu(x) \land \mu(y)$$
 (1.1)

or $\eta(y) \land \mu(x) \ge \eta(xy) \land \mu(x) \land \mu(y)$ (1.2)

or $\eta(x^n) \wedge \mu(x) \wedge \eta(y^m) \wedge \mu(y) \ge \eta(xy) \wedge \mu(x) \wedge \mu(y)$, (1.3)

for some integers m, n > 1.

Obviously, every prime ideal of an L-ring $L(\mu, R)$ is a primary ideal of μ .

Lemma 2.21. Let *R* be a ring. An ideal *I* of *R* is primary if and only if, whenever $xy \in I$ we have either

 $x \in I \text{ or } y \in I \text{ or } (x^n \& y^m \in I), \text{ for some integers } m, n > 1.$

Proof. Suppose that the ideal I is primary. Let $xy \in I$. Then we consider the following three cases.

case (i) x ∉ I, y ∉ I.

Since I is a primary ideal and $x \notin I$, we have $y^m \in I$ for some positive integer m. Also m > 1, since $y \notin I$. Similarly, we have $x^n \in I$ for some integer n > 1.

Case (ii) $x \notin I$ and either $x^n \notin I$ or $y^n \notin I$ for any integer n > 1.

Again, since I is a primary ideal and $x \notin I$, we have $y^m \in I$ for some integer $m \ge 1$. We show that $y \in I$. Suppose $y \notin I$. Then m > 1. Therefore by the hypothesis $x^n \notin I$ for any integer n > 1. Since I is primary and $y \notin I$, $x^m \in I$ for some integer $m \ge 1$. As $x \notin I$, therefore m > 1. Hence $x^m \in I$ for some integer m > 1, which is a contradiction. Thus $y \in I$.

ISSN: 2457-1016

Case(iii) $y \notin I$ and either $x^n \notin I$ or $y^n \notin I$ for any integer n > 1. The proof of this part is similar to that of case (ii).

To prove the converse part, suppose $xy \in I$ and $x \notin I$. Then either $y \in I$ or there exists integers m, n > 1 such that $x^n \in I$ and $y^m \in I$. Thus, in either case $y^m \in I$ for some positive integer m. Similarly if $y \notin I$, then $x^n \in I$ for some positive integer n. Thus I is a primary ideal of R.

Theorem 2.22. Let $L(\mu, R)$ be an L-ring and η be an ideal of μ with $\eta \neq \mu$. Then η is a primary ideal of μ if and only if for each non-empty level subset η_t , either $\eta_t = \mu_t$ or η_t is a primary ideal of μ_t .

Proof. Suppose η is a primary ideal of μ and η_t is a non-empty level subset such that $\eta_t \neq \mu_t$. Let $xy \in \eta_t$, $x, y \in \mu_t$. Then it follows that $\eta(xy) \land \mu(x) \land \mu(y) \ge t$. Since η is primary ideal of μ , one of the conditions (1.1), (1.2) and (1.3) hold. Now, if condition (1.1) holds then

 $\eta(x) \geq \eta(x) \land \mu(y) \geq \eta(xy) \land \mu(x) \land \mu(y) \geq t$.

Thus $x \in \eta_t$. If (1.2) holds, then

 $\eta(y) \geq \eta(y) \land \mu(x) \geq \eta(xy) \land \mu(x) \land \mu(y) \geq t$.

Thus $y \in \eta_t$. In case condition (1.3) is valid, we have

$$\eta(x^{^n}) \wedge \mu(x) \wedge \eta(y^{^m}) \wedge \mu(y) \geq \eta(xy) \wedge \mu(x) \wedge \mu(y) \geq t$$

for some integer m,n>1.

Thus $x^n, y^m \in \eta$, Therefore, by Lemma 2.21, η_{-t} is a primary ideal of μ_t .

Our next result shows that every semiprime ideal of an L-ring which is also primary is a prime ideal.

ISSN: 2457-1016

Theorem 2.23. Let $L(\mu, R)$ be an L-ring and η be a semiprime ideal of μ . If η is a primary ideal of μ , then η is a prime ideal of μ .

Proof. Let $x, y \in R$. Since η is semiprime ideal of μ , we have

$$\eta(x^{^n})\wedge\mu(x)=\eta(x) \ \ \text{and} \ \ \eta(y^{^m})\wedge\mu(y)=\eta(y) \ \, , \ \ \forall n,\,m\in Z^{\scriptscriptstyle +}.$$

Thus

$$\eta(x^{n}) \wedge \mu(x) \wedge \eta(y^{m}) \wedge \mu(y) = \eta(x) \wedge \eta(y), \quad \forall n, m \in \mathbb{Z}^{+}$$
(1.4)

Since η is a primary ideal of μ , one of the conditions (1.1), (1.2) and (1.3) holds. If condition (1.3) holds then for some integers r,s > 1, we have

 $\eta(x^{r}) \wedge \mu(x) \wedge \eta(y^{s}) \wedge \mu(y) \geq \eta(xy) \wedge \mu(x) \wedge \mu(y).$

From this alongwith (1.4), we have

$$\eta(x) \land \mu(y) \ge \eta(x) \land \eta(y) = \eta(x^{r}) \land \mu(x) \land \eta(y^{s}) \land \mu(y)$$

$$\geq \eta(xy) \land \mu(x) \land \mu(y)$$

This again gives us condition (1.1). Therefore, either condition (1.1) or (1.2) holds. Since η is an ideal of μ , by Lemma 1.17, we have

$$\eta(xy) \land \mu(x) \land \mu(y) \ge \eta(x) \land \mu(y)$$
 and $\eta(xy) \land \mu(x) \land \mu(y) \ge \eta(y) \land \mu(x)$.

Thus either,

$$\eta(xy) \wedge \mu(x) \wedge \mu(y) = \eta(x) \wedge \mu(y) \text{ or } \eta(xy) \wedge \mu(x) \wedge \mu(y) = \eta(y) \wedge \mu(x) \text{ .}$$

Therefore η is a prime ideal of μ .

Theorem 2.24. Let *R* be a commutative ring and *L* be a complete lattice. Let $L(\mu, R)$ be an *L*-ring and η be a primary ideal of μ and has sup property. Then $\sqrt{\eta}$ is a prime ideal of μ . Also $\sqrt{\sqrt{\eta}} = \sqrt{\eta}$.

ISSN: 2457-1016

Proof. By Theorem 2.10, $\sqrt{\eta}$ is an ideal of μ .Let $x, y \in \mathbb{R}$. Since η has sup property, there exists $m \in Z^+$ such that

$$\sqrt{\eta}(xy) = \bigvee_{n \in Z^{+}} \left[\eta(xy)^{n} \wedge \mu(xy) \right] = \eta(x^{m}y^{m}) \wedge \mu(xy).$$
(1.5)

Now

$$\sqrt{\eta}(x) = \bigvee_{n \in Z^+} \left[\eta(x^n) \wedge \mu(x) \right] \ge \eta(x^s) \wedge \mu(x), \quad \forall s \in Z^+.$$

Hence

$$\sqrt{\eta}(x) \wedge \mu(y) \ge \eta(x^s) \wedge \mu(x) \wedge \mu(y), \quad \forall s \in \mathbb{Z}^+.$$
(1.6)

Similarly

$$\sqrt{\eta(y) \wedge \mu(x) \ge \eta(y^{s}) \wedge \mu(x) \wedge \mu(y)}, \quad \forall s \in \mathbb{Z}^{+}$$
(1.7)

Since η is a primary ideal of $\mu,$ by Definition 2.20, we have either

$$\eta(x^{m} y^{m}) \wedge \mu(x^{m}) \wedge \mu(y^{m}) \leq \eta(x^{m}) \wedge \mu(y^{m})$$
(1.8)

or
$$\eta(x^m y^m) \wedge \mu(x^m) \wedge \mu(y^m) \leq \eta(y^m) \wedge \mu(x^m)$$
 (1.9)

or
$$\eta(x^m y^m) \wedge \mu(x^m) \wedge \mu(y^m) \leq \eta(x^{mk}) \wedge \mu(x^m) \wedge \eta(y^{mr}) \wedge \mu(y^m)$$
 (1.10)

for some integers k, r > 1.

By (1.5), we have

$$\begin{split} \sqrt{\eta}(xy) \wedge \mu(x) & \wedge \mu(y) = \eta(x^m y^m) \wedge \mu(xy) \wedge \mu(x) \wedge \mu(y) \\ & = \eta(x^m y^m) \wedge \mu(x) \wedge \mu(y) \\ & = \eta(x^m y^m) \wedge \mu(x^m) \wedge \mu(y^m) \wedge \mu(x) \wedge \mu(y) . \end{split}$$

If (1.8) holds, then

$$\begin{split} \sqrt{\eta}(xy) \wedge \mu(x) \wedge \mu(y) &\leq \eta(x^{m}) \wedge \mu(y^{m}) \wedge \mu(x) \wedge \mu(y) \\ &= \Big[\eta(x^{m}) \wedge \mu(x)\Big] \wedge \mu(y) \end{split}$$

http://www.bharatpublication.com

(IJTSE) 2017, Vol. No. 1, Issue No. I, Oct-Dec

ISSN: 2457-1016

$$\leq \sqrt{\eta}(x) \wedge \mu(y).$$
 (by (1.6))

If (1.9) holds, then

$$\begin{split} \sqrt{\eta(xy) \land \mu(x) \land \mu(y)} &\leq \eta(y^{m}) \land \mu(x^{m}) \land \mu(x) \land \mu(y) \\ &= [\eta(y^{m}) \land \mu(x)] \land \mu(y) \\ &\leq \sqrt{\eta}(y) \land \mu(y). \end{split} \tag{by (1.7)}$$

In case, condition (1.10) is valid, then

$$\begin{split} \sqrt{\eta}(xy) \wedge \mu(x) &\wedge \mu(y) \leq \eta(x^{mk}) \wedge \mu(x^{m}) \wedge \eta(y^{mr}) \wedge \mu(y^{m}) \wedge \mu(x) \wedge \mu(y) \\ &= \eta(x^{mk}) \wedge \eta(y^{mr}) \wedge \mu(x) \wedge \mu(y) \\ &= \left[\eta(x^{mk}) \wedge \mu(x) \wedge \mu(y)\right] \wedge \left[\eta(y^{mr}) \wedge \mu(y) \wedge \mu(x)\right] \\ &\leq \left[\sqrt{\eta}(x) \wedge \mu(y)\right] \wedge \left[\sqrt{\eta}(y) \wedge \mu(x)\right] \\ &\leq \sqrt{\eta}(x) \wedge \mu(y) \,. \end{split}$$

Hence $\sqrt{\eta}$ is a prime ideal of μ . By Theorem 2.6, $\sqrt{\eta}$ is a semiprime ideal and hence by Theorem 2.8, $\sqrt{\sqrt{\eta}} = \sqrt{\eta}$.

Definition 2.25. Let *R* be a commutative ring and *L* be a complete lattice. Let $L(\mu, R)$ be an *L*-ring. Let η be a primary ideal of μ and η has sup property. Then $\sqrt{\eta}$ is a prime ideal of μ , called the associated prime ideal of η .

Our next result shows that the associated prime ideal of η is the smallest prime ideal of μ containing η .

Theorem 2.26. Let *R* be a commutative ring and *L* be a complete lattice. Let $L(\mu, R)$ be an *L*-ring. Let η be a primary ideals of μ and has sup property. Then the associated prime ideal of η is the smallest prime ideal of μ containing η .

Proof. Suppose θ is a prime ideal of μ such that $\eta \subseteq \theta$. Since θ is a prime ideal of μ , θ is a semiprime ideal of μ . Hence by Theorem 2.8, we have $\sqrt{\theta} = \theta$. Now $\eta \subseteq \theta$ implies that $\sqrt{\eta} \subseteq \sqrt{\theta} = \theta$.

Theorem 2.27. Let R be a commutative ring and L be a complete chain. Let $L(\mu, R)$ be an L-ring. Let η and θ be ideals of μ such that $\eta \subseteq \theta \subseteq \sqrt{\eta}$. Suppose that η has sup property and for $a, b \in R$, we have

 $\eta(ab) > \theta(a) \Longrightarrow \eta(ab) = \eta(b)$.

Then η is a primary ideal of μ and $\sqrt{\eta} = \theta$.

Proof. By Theorem 2.10, $\sqrt{\eta}$ is an ideal of μ . Let $a, b \in R$. Then the following three cases arise.

Case (i) $\eta(ab) > \theta(a)$.

Then $\eta(ab) = \eta(b)$. Now $\eta(b) \land \mu(a) = \eta(b) \land \mu(b) \land \mu(a) = \eta(ab) \land \mu(a) \land \mu(b)$.

Case (ii) $\eta(ab) \le \theta(a)$ and $\eta(ab) > \theta(b)$.

Then $\eta(ab) = \eta(a)$. Now, we have

 $\eta(a) \wedge \mu(b) = \eta(a) \wedge \mu(a) \wedge \mu(b) = \eta(ab) \wedge \mu(a) \wedge \mu(b)$.

Case (iii) $\eta(ab) \le \theta(a)$ and $\eta(ab) \le \theta(b)$.

Since $\eta \subseteq \theta \subseteq \sqrt{\eta}$, we have

 $\eta(ab) \leq \theta(a) \leq \ \sqrt{\eta}(a) = \mathop{\bigtriangledown}_{a \in Z^{^+}} \left[\eta(a^{^n}) \land \mu(a) \right] = \eta(a^{^k}) \land \mu(a) \text{ , for some } k \in Z^{^+}$

(Since η has sup property).

Similarly $\eta(ab) \leq \eta(b^m) \land \mu(b)$, for some $m \in Z^+$. Thus

 $\eta(ab) \land \mu(a) \land \mu(b) = \left[\eta(ab) \land \mu(a) \land \mu(b) \right] \land \left[\eta(ab) \land \mu(a) \land \mu(b) \right]$

(IJTSE) 2017, Vol. No. 1, Issue No. I, Oct-Dec

ISSN: 2457-1016

$$\leq \left[\eta(a^{k}) \land \mu(a) \land \mu(b) \right] \land \left[\eta(b^{m}) \land \mu(a) \land \mu(b) \right]$$

= $\eta(a^{k}) \land \mu(a) \land \eta(b^{m}) \land \mu(b)$, for some $k, m \in \mathbb{Z}^{+}$.

Thus η is a primary ideal of μ .

To show that $\sqrt{\eta} = \theta$, it is sufficient to show that $\sqrt{\eta} \subseteq \theta$. Let $a \in \mathbb{R}$. Firstly we show that $\eta(a^n) \le \theta(a)$, $\forall, n \in Z^+$. Suppose this is not the case. Then there exists $k \in Z^+$ such that $\eta(a^k) > \theta(a)$. Let m be the smallest positive integer such that $\eta(a^m) > \theta(a)$. Since $\eta \subseteq \theta$, we have $\eta(a) \le \theta(a)$. Thus $m \ge 2$. Now $\eta(a^{m-1}a) > \theta(a)$. By the given hypothesis, we have $\eta(a^m) = \eta(a^{m-1})$. Thus $\eta(a^{m-1}) = \eta(a^m) > \theta(a)$, which is a contradiction. So that $\eta(a^n) \le \theta(a)$, $\forall n \in Z^+$. Therefore

$$\sqrt{\eta}(a) = \bigvee_{n \in Z^*} \left[\eta(a^n) \wedge \mu(a) \right] \leq \bigvee_{n \in Z^*} \eta(a^n) \leq \theta(a)$$
.

Hence $\sqrt{\eta} \subseteq \theta.$

Lemma 2.28. Let *L* be a complete lattice and $L(\mu, R)$ be an *L*-ring. Let $\{\eta_i\}$ be a chain of prime ideals of μ . Then $\bigcap_i \eta_i$ is a prime ideal of μ .

Proof. $\bigcap_{i} \eta_{i}$ is an ideal of μ . Let $\left(\bigcap_{i} \eta_{i}\right)_{t}$ be a non-empty level subset. Suppose that $\left(\bigcap_{i} \eta_{i}\right)_{t} \neq \mu_{t}$. By Lemma 1.14, $\left(\bigcap_{i} \eta_{i}\right)_{t} = \bigcap_{i} (\eta_{i})_{t}$. Since $\left(\bigcap_{i} \eta_{i}\right)_{t}$ is non-empty, (η_{i}) is non-empty for each i. Since for each i, η_{i} is prime ideal of μ , by Theorem 2.2, either $(\eta_{i})_{t} = \mu_{t}$ or $(\eta_{i})_{t}$ is a prime ideal of μ_{t} . Let $xy \in \left(\bigcap_{i} \eta_{i}\right)_{t}$, $x, y \in \mu_{t}$. Then $xy \in (\eta_{i})$ for each i. If possible, $x \notin \bigcap_{i} (\eta_{i})_{t}$ and $y \notin \bigcap_{i} (\eta_{i})_{t}$. Then there exists j,k such that $x \notin (\eta_{j})$ and $y \notin (\eta_{j})_{t}$. Since $\{\eta_{i}\}$ is a chain, we assume

(IJTSE) 2017, Vol. No. 1, Issue No. I, Oct-Dec

that
$$\eta \subseteq \eta$$
. Thus $(\eta) \subseteq (\eta)$. Hence $x \notin (\eta)_{j_t}$ and $y \notin (\eta)_{j_t}$. This contradicts
that either $(\eta_j) = \mu_t$ or (η_j) is a prime ideal of μ_t . Thus, either $x \in \bigcap_{i \to t} (\eta)_{i_t} = (\bigcap_{i \to t} \eta)_{i_t}$ or $y \in \bigcap_{i \to t} (\eta)_{i_t}$. Hence $(\bigcap_{i \to t} \eta)_{i_t}$ is a prime ideal of μ_t . By

Theorem 2.2, η is a prime ideal of μ .

Theorem 2.29. Let *L* be a complete lattice and $L(\mu,R)$ be an *L*-ring. Then, the intersection of an arbitrary family of semiprime ideals of μ is a semiprime ideal of μ .

Proof. Let $\{\eta_{i \in \lambda}\}$ be a family of semiprime ideals of μ . Then by Lemma 1.16, $\bigcap_{i \in \lambda} \eta_i$ is an ideal of μ . Let $x \in R, n \in Z^+$. Since for each $i \in \lambda$, η_i is semiprime ideal of μ , we have

$$\eta_i(x^n) \wedge \mu(x) = \eta_i(x), \quad \forall i \in \lambda.$$

Now

$$\left| \bigcap_{i \in \lambda} \eta_i \left| (x_n) \wedge \mu(x) \right| = \left| \bigwedge_{i \in \lambda} \eta_i(x_n) \right| \bigwedge_{n} \mu(x) = \left| \bigwedge_{i \in \lambda} \eta_i(x_n) \wedge \mu(x) \right|$$

$$= \bigwedge_{i \in \lambda} \eta_i(x) = \left| \bigcap_{i \in \lambda} \eta_i \right| (x) .$$

Thus $\underset{_{i\in\lambda}}{\cap}\eta_{i}$ is a semiprime ideal of μ . \blacksquare

Definition 2.30. Let $L(\mu, R)$ be an L-ring and η be an ideal of μ . A prime ideal θ of μ is said to be a minimal prime ideal of η (or an isolated prime ideal of η), if $\eta \subseteq \theta$ and there is no prime ideal v of μ such that $\eta \subseteq v \subseteq \theta$.

Let $L(\mu,R)$ be an L-ring. Consider the L-subset $\,\theta_{\mu}\colon R\to L\,$ defined by

(IJTSE) 2017, Vol. No. 1, Issue No. I, Oct-Dec

Then θ_{μ} is a prime ideal of μ called the minimal prime ideal of μ .

Theorem 2.31. Let *L* be a complete lattice and $L(\mu, R)$ be an *L*-ring. Let η be an ideal of μ and θ be a prime ideal of μ such that $\eta \subseteq \theta$. Then there exists a minimal prime ideal ν^* of η such that $\eta \subseteq \nu^* \subseteq \theta$.

Proof. Let $\Im = \{v \mid v \text{ is prime ideal of } \mu \text{ and } \eta \subseteq v \subseteq \theta\}$. The family \Im is non-empty, since $\theta \in \Im$. Define a relation of partial ordering \leq on \Im , as follows

$$v_1 \leq v_2$$
 if $v_2 \subseteq v_1$.

Consider a chain τ in \mathfrak{T} . Write $v_0 = \bigcap_{v_i \in \tau} v_i$. By Lemma 2.28, v_0 is a prime ideal of μ . Since $\eta \subseteq v_i \subseteq \theta$ for all $v_i \in \tau$, we have $\eta \subseteq v_0 \subseteq \theta$. Thus $v_0 \in \mathfrak{T}$. Also $v_0 \subseteq v_i$ for all $v_i \in \tau$. Therefore $v_i \leq v_0$ for all $v_i \in \tau$. Hence v_0 is an upper bound of the chain τ in \mathfrak{T} . By Zorn's Lemma, \mathfrak{T} has a maximal element v^* (say). That is, $v^* \in \mathfrak{T}$ and if $v' \in \mathfrak{T}$ with $v^* \leq v'$, then $v^* = v'$. Since $v^* \in \mathfrak{T}$, v^* is a prime ideal of μ such that $\eta \subseteq v^* \subseteq \theta$. To show that v^* is a minimal prime ideal of η , let ξ be any prime ideal of μ such that $\eta \subseteq \xi \subseteq v^*$. Then $\xi \in \mathfrak{T}$ and $v^* \leq \xi$. Since v^* is maximal element of \mathfrak{T} , we have $v^* = \xi$ Hence v^* is a minimal prime ideal of η such that $\eta \subseteq v^* \subseteq \theta$.

Theorem 2.32. Let *R* be a commutative ring and $L(\mu, R)$ be an *L*-ring. Let η be a semiprime ideal of *v* and *v* be an ideal of μ . Then η is an ideal of μ .

Proof. Let $x, y \in R$. Since η is a semiprime ideal of ν , we have

 $\eta(xy) = \eta((xy) (xy)) \land \nu(xy)$

(IJTSE) 2017, Vol. No. 1, Issue No. I, Oct-Dec

ISSN: 2457-1016

$\geq \eta(x) \land \nu(y(xy)) \land \nu(xy)$	(Since η is an ideal of v)
$\geq \eta(x) \wedge \nu(xy) \wedge \mu(y) \wedge \nu(xy)$	(Since ν is an ideal of μ)
$\geq \eta(x) \land \mu(y) \land \nu(x) \land \mu(y)$	(Since ν is an ideal of $\mu)$
$=\eta(x)\wedge\mu(y)$	(Since $\eta \subseteq v$)

Similarly $\eta(xy) \ge \eta(y) \land \mu(y)$. Thus η is an ideal of μ .

Corollary 2.33. Let *R* be a commutative ring and $L(\mu, R)$ be an *L*-ring. Let η be a prime ideal of *v* and *v* be an ideal of μ . Then η is an ideal of μ .

Proof. Obvious.

Definition 2.34. Let $L(\mu, R)$ be an L-ring. An ideal η of μ is said to be *irreducible* if, whenever $\eta = \nu \cap \theta$, for some ideals ν and θ of μ , then either $\nu = \eta$ or $\theta = \eta$. An ideal η of μ is said to be *reducible* if it is not irreducible.

Definition 2.35. Let $L(\mu, R)$ be an L-ring and η be an ideal of μ . Let $\{(\eta_t, \mu_t)\}$ be the family of distinct pairs of non-empty level subsets. Then η is said to be a *prime ideal of* μ *of rank* r if there exists exactly r distinct pairs of level subsets, (η_t, μ_t) such that η_t is a prime ideal of μ_t and $\eta_t = \mu_t$ for all other pairs.

Clearly every prime ideal of μ of rank r is a prime ideal of μ .

Definition 2.36. Let $L(\mu, R)$ be an L-ring. An ideal η of μ is said to be *weakly prime* ideal of μ if for every pair of non-empty level subsets, (η, μ) with $\eta_t \neq R$, η_t is a prime ideal of μ_t .

Example 2.37. Let R be the ring of integers and L be a chain of four elements $t_3 < t_2 < t_1 < t_0$. Define $\mu: R \rightarrow L$ as follows :

ISSN: 2457-1016

(IJTSE) 2017, Vol. No. 1, Issue No. I, Oct-Dec

$$\mu(x) = \begin{cases} t_0 & \text{if } x \in (2^3) \\ t_1 & \text{if } x \in (2^2) - (2^3) \\ t_2 & \text{if } x \in (2) - (2^2) \\ t_3 & \text{if } x \in R - (2) . \end{cases}$$

Then $L(\mu, R)$ is an L-ring. Define $\eta: R \to L$ as follows :

$$\eta(\mathbf{x}) = \begin{cases} t_0 & \text{if } \mathbf{x} \in (2^4) \\ t_1 & \text{if } \mathbf{x} \in (2^3) - (2^4) \\ t & \text{if } \mathbf{x} \in (2^2) - (2^3) \\ 2 \\ t_3 & \text{if } \mathbf{x} \in \mathbf{R} - (2^2) . \end{cases}$$

Clearly η is a weakly prime ideal of μ . Define $v: R \to L$ as follows

$$v(\mathbf{x}) = \begin{cases} t_0 & \text{if } \mathbf{x} \in (2^4) \\ t_1 & \text{if } \mathbf{x} \in (2^3) - (2^4) \\ t_2 & \text{if } \mathbf{x} \in (2) - (2^3) \\ t_3 & \text{if } \mathbf{x} \in \mathbf{R} - (2) . \end{cases}$$

Clearly v is a prime ideal of μ of rank 2. Moreover, v is reducible since $v = \zeta \cap \theta$, where ζ and θ are ideals of μ defined by

$$\begin{aligned} \zeta(\mathbf{x}) &= \begin{cases} t_0 & \text{if } \mathbf{x} \in (2^3) \\ t_2 & \text{if } \mathbf{x} \in (2) - (2^3) \\ t_3 & \text{if } \mathbf{x} \in \mathbf{R} - (2) \end{cases} \\ \theta(\mathbf{x}) &= \begin{cases} t_0 & \text{if } \mathbf{x} \in (2^4) \\ t_1 & \text{if } \mathbf{x} \in (2^2) - (2^4) \\ t_2 & \text{if } \mathbf{x} \in (2) - (2^2) \\ t_3 & \text{if } \mathbf{x} \in \mathbf{R} - (2) . \end{cases} \end{aligned}$$

BHARAT PUBLICATION

63

Theorem 2.38. Let *L* be a chain and $L(\mu, R)$ be an *L*-ring. Let η be a prime ideal of rank 1 such that η_{t_0} is a prime ideal of μ_{t_0} for some $t_0 \in \text{Im } \mu$. Then η is irreducible in μ .

Proof. Let $\eta = v \cap \theta$, where v and θ are ideals of μ . Then $\eta \subseteq v \subseteq \mu$ and $\eta \subseteq \theta \subseteq \mu$, and hence $\eta_t \subseteq v_t \subseteq \mu_t$ and $\eta_t \subseteq \theta_t \subseteq \mu_t$, $\forall t \in L$. Now $\eta_{t_0} = (v \cap \theta)_{t_0} = v_{t_0} \cap \theta_{t_0}$. By the hypothesis η_{t_0} is a prime ideal of μ_{t_0} . Since every prime ideal of a ring is irreducible, we have either $v_{t_0} = \eta_{t_0}$ or $\theta_{t_0} = \eta_{t_0}$. Before we show that η is irreducible, we prove that

$$v_t = \eta_t$$
 and $\theta_t = \eta_t$, $\forall t \in L$ with $t_0 < t$.

Let $t \in L$ with $t_0 < t$. Since $t_0 \in Im \mu$, $\mu_t \subset \mu_{t_0}$. Thus $(\eta_t, \mu_t) \neq (\eta_{t_0} \mu_{t_0})$. Since η is a prime ideal of μ of rank 1 and η_{t_0} is a prime ideal of μ_{t_0} , we have $\eta_t = \mu_t$. By using $\eta_t \subseteq v_t \subseteq \mu_t$, we have $v_t = \eta_t$. Similarly $\theta_t = \eta_t$. In order to show that either $v = \eta$ or $\theta = \eta$, we consider the following cases.

Case (i) $v_{t_0} = \eta_{t_0}$ and $\theta_{t_0} \neq \eta_{t_0}$. As we have $\eta_t \subseteq \theta_t \subseteq \mu_t$, $\forall t \in L$, therefore $\eta_{t_0} \subsetneq \theta_{t_0}$. We prove that $v_t = \eta_t$, $\forall t \in Imv$. If possible, there exists $t_1 \in Imv$ such that $v_{t_1} \neq \eta_{t_1}$. As we have $\eta_t \subseteq v_t \subseteq \mu_t$, $\forall t \in L$, therefore $\eta_{t_1} \gneqq v_{t_1}$. Since $v_t = \eta_t$, $\forall t \in L$ with $t_0 < t$, we have $t_1 < t_0$. Thus $\theta_{t_0} \subseteq \theta_{t_1}$. Since η is a prime ideal of μ and $\eta_{t_1} \gneqq v_{t_1} \subseteq \mu_{t_1}$, by Theorem 2.2, η_{t_1} is a prime ideal of μ_{t_1} . Since $\eta_{t_1} = \eta_0$, $\mu_{t_1} = \mu_{t_0}$. Since every prime ideal of a ring is irreducible, $\eta_{t_1} = \theta_{t_1}$. Thus $\theta_{t_0} = \eta_{t_1} = \eta_{t_0} = \eta_{t_1} = \eta_{t_0}$.

ISSN: 2457-1016

which is a contradiction. Thus $v_t = \eta_t$, $\forall t \in Im v$ and $\eta \subseteq v$. By Lemma 1.7, we have $v = \eta$.

Case (ii) $\theta_{t_0} = \eta_{t_0}$ and $\nu_{t_0} \neq \eta_{t_0}$. This case is similar to (i). In this case $\theta = \eta$. **Case (iii)** $\nu_{t_0} = \eta_{t_0}$ and $\theta_{t_0} = \eta_{t_0}$. We show that either

$$\nu_{\iota}{=}\,\eta_{\iota}\,{,}\forall t\in Im\,\nu~~\text{or}~\theta_{\iota}~{=}\,\eta_{\iota}$$
 , $\forall~t\in Im\,\theta$.

If possible, there exists $t_1 \in Imv$ and $t_2 \in Im\theta$ such that $v_{t_i} \neq \eta_{t_i}$ and $\theta_{t_2} \neq \eta_{t_2}$. In view of the fact that $\eta_t \subseteq v_t \subseteq \mu_t$ and $\eta_t \subseteq \theta_t \subseteq \mu_t$, $\forall t \in L$, we have $\eta_{t_i} \not\subseteq v_{t_i}$ and $\eta_{t_2} \not\subseteq \theta_{t_2}$. We have shown above that $v_t = \eta_t$ and $\theta_t = \eta_t$, $\forall t \in L$ with $t_0 < t$. Therefore, we have $t_1 < t_0$ and $t_2 < t_0$. Since η is a prime ideal of μ and $\eta_{t_1} \not\subseteq v_{t_1} \subseteq \mu_{t_1}$, by Theorem 2.2, η_{t_1} is a prime ideal of μ_{t_0} , and thus $\eta_{t_1} = \eta_0$, $\mu_{t_1} = \mu_{t_0}$. Now, since every prime ideal of a ring is irreducible, η_{t_1} is irreducible ideal of μ_{t_1} . Hence $\theta_{t_1} = \eta_{t_1} = \theta_{t_0} = \theta_{t_0} \not\subseteq \theta_{t_2}$, since $t_2 \in Im\theta$ and $t_2 < t_0$. Thus $t_2 < t_1$. Similarly, we can show that $t_1 < t_2$, which is a contradiction. Thus we have either $v_t = \eta_t$, $\forall t \in Imv$ or $\theta_t = \eta_t$, $\forall t \in Im\theta$. We have either $v = \eta$ or $\theta = \eta$. Thus η is irreducible in μ .

Theorem 2.39. Let L be a complete chain and R be a commutative ring with unity. Let $L(\mu, R)$ be an L-ring and η be an ideal of μ and has sup property. Let $\sqrt{\eta}$ be a maximal ideal of μ such that $(\sqrt{\eta}_{t_0})$ is a maximal ideal of μ_{t_0} , $t_0 \in \text{Im } \mu$ and $\mu_{t_0} = R$. Then η is a primary ideal of μ .

ISSN: 2457-1016

Proof. Let η_t be a non-empty level subset of μ_t such that $\eta_t \subseteq \mu_t$. We show that η_t is primary ideal of μ_t . Now, two cases arise :

Case (i) $(\sqrt{\eta})_t = \mu_t$. Then by Lemma 2.9, we have $\sqrt{\eta_t} \cap \mu_t = \mu_t$. Let $ab \in \eta_t$, $a, b \in \mu_t$ and $a \notin \eta_t$. Now $b \in \mu_t = \sqrt{\eta_t} \cap \mu_t \subseteq \sqrt{\eta_t}$. Thus η_t is a primary ideal of μ_t .

Case (ii) $(\sqrt{\eta})_t \neq \mu_t$. By Theorem 1.12, we have $(\sqrt{\eta})_t = (\sqrt{\eta})_{\tau_0}$ and $\mu_t = \mu_{\tau_0} = R$. Therefore, we have

$$\left(\sqrt{\eta}\right)_{t_0} = \left(\sqrt{\eta}\right)_t = \sqrt{\eta_t} \cap \mu_t = \sqrt{\eta_t} \cap R = \sqrt{\eta_t}$$
.

By the hypothesis, $(\sqrt{\eta}_{t_0})$ is a maximal ideal of μ_{t_0} , therefore $\sqrt{\eta_t}$ is a maximal ideal of R. Consequently in view of a result of classical ring theory η_t is a primary ideal of R. That is, η_t is a primary ideal of μ_t .

Theorem 2.40. Let $L(\mu, R)$ be an L-ring. Let η be a prime ideal of μ and ν be an ideal of μ . Then $\eta \cap \nu$ is a prime ideal of ν .

Proof. It is easy to verify that $\eta \cap v$ is an ideal of v. To show that $\eta \cap v$ is a prime ideal of v, let $x, y \in R$. Now

 $(\eta \bigcap \nu)(xy) \land \nu(x) \land \nu(y) = \eta(xy) \land \nu(xy) \land \nu(x) \land \nu(y)$

$$= \eta(xy) \wedge \nu(x) \wedge \nu(y) \qquad (\nu(xy) \ge \nu(x) \wedge \nu(y))$$

$$= \eta(xy) \land \mu(x) \land \mu(y) \land \nu(x) \land \nu(y) \qquad (\mu(x) \ge \nu(x))$$

Since η is prime ideal of μ , we have either

$$\eta(xy) \wedge \mu(x) \wedge \mu(y) = \eta(x) \wedge \mu(y)$$
 or $\eta(xy) \wedge \mu(x) \wedge \mu(y) = \eta(y) \wedge \mu(x)$.

If $\eta(xy) \wedge \mu(x) \wedge \mu(y) = \!\! \eta(x) \wedge \!\! \mu(y)$, then we have

ISSN: 2457-1016

$$(\eta \bigcap \nu)(xy) \land \nu(x) \land \nu(y) = \eta(x) \land \mu(y) \land \nu(x) \land \nu(y)$$
$$= (\eta \bigcap \nu)(x) \land \nu(y)$$

Similarly, if $\eta(xy) \land \mu(x) \land \mu(y) = \eta(y) \land \mu(x)$, then we have

 $(\eta \bigcap \nu)(xy) \wedge \nu(x) \wedge \nu(y) = (\eta \bigcap \nu)(y) \wedge \nu(x).$

Thus $\eta \cap v$ is a prime ideal of μ .

Theorem 2.41. Let *L* be a complete lattice and $L(\mu, R)$ be an *L*-ring. Let *v* be a semiprime ideal of μ . Then for any ideal η of μ with $\eta \subseteq v$, we have $\sqrt{\eta} \subseteq v$.

Proof. Since ν is a semiprime ideal of μ , by Theorem 2.8, we have $\sqrt{\nu} = \nu$. Since $\eta \subseteq \nu$, by Theorem 2.12, we have $\sqrt{\eta} \subseteq \sqrt{\nu} = \nu$.

Corollary 2.42. Let *L* be a complete lattice and $L(\mu, R)$ be an *L*-ring. Let η be an *ideal of* μ . Then η and $\sqrt{\eta}$ are contained in the same prime ideal of μ .

Proof. Obvious.

REFERENCES

- 1. Ajmal, N. and Sunil Kumar, Lattice of subalgebras in the category of fuzzy groups, The Journal of Fuzzy Mathematics , Vol. 10, No. 2 (2002) 359-369.
- Ajmal, N. and Prajapati, A. S., Prime radical and primary decomposition of ideals in an L-subring ---- Communicated.
- 3. Ajmal, N. and Prajapati, A. S., Residual of ideals of an L-ring (Preprint).
- 4. Birkhoff, G., Lattice Theory, American Mathematical Soceity, Providence, Rhode Island (1967).
- Burton, D.M., A First Course in Rings and Ideals, Addison-Wesley, Reading, Massachusetts, 1970.

- Malik, D.S. and Mordeson, J.N., Fuzzy prime ideals of rings, FSS 37 (1990) 93-98.
- Malik, D.S. and Mordeson, J.N., Fuzzy maximal, radical, and primary ideals of a ring, Inform. Sci. 53 (1991) 237-250.
- 8. Malik, D.S. and Mordeson, J.N., Fuzzy primary representations of fuzzy ideals, Inform. Sci. 55 (1991) 151-165.
- Malik D.S. and Mordeson, J.N., Radicals of fuzzy ideals, Inform. Sci. 65 (1992) 239-252.
- 10. Malik, D.S., Mordeson, J.N. and Nair, P.S., Fuzzy normal subgroups in fuzzy subgroups, J. Korean Math. Soc. 29 (1992) 1-8.
- 11. Malik, D.S. and Mordeson, J.N., R-primary representation of L-ideals, Inform, Sci. 88 (1996) 227-246.
- 12. Mordeson, J.N., L-subspaces and L-subfield, Centre for Research in Fuzzy Mathematics and Computer Science, Creighton University, USA. 1996.
- 13. Mordeson, J.N. and Malik, D.S., Fuzzy Commutative Algebra, World Scientific Publishing Co. USA. 1998.
- 14. Prajapati, A.S. and Ajmal, N., Maximal ideals of L-subring. ---Communicated.
- 15. Prajapati, A.S. and Ajmal, N., Maximal ideals of L-subringII. ---Communicated.
- 16. Szasz, G. Introduction to Lattice Theory, Academic Press, New York and London, 1963.
- 17. Yu Yandong, Mordeson, J. N. and Cheng, Shih-Chuan, Elements of Lalgebra, Lecture notes in Fuzzy Mathematics and Computer Science 1,

ISSN: 2457-1016

Center for Research in Fuzzy Mathematics and Computer Science, Creighton University, USA. 1994.