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ABSTRACT

In this paper, we develop a systematic theory for the ideals of an L-ring L(u, R) . We
introduce the concepts of prime ideal, semiprime ideal, primary ideal and radical of
an ideal in an L-ring. We prove several results pertaining to these notions which are
versions of their counter part in classical ring theory. Besides this we prove that for

a commutative ring R, the radical \/ﬁ of a primary ideal n of an L-ring L(i,R) is a

prime ideal of p provided m has sup-property. Moreover we introduce the concepts
of minimal prime ideal and that of irreducibility of an ideal. Furthermore, we
introduce the concept of semiprime radical of ideal in an L-ring. Among various
results pertaining to this concept, we prove here that semiprime radicals of an ideal

N, its radical /n, and its semiprime radical S(n) , all coincide.

INTRODUCTION

We introduced the concept of a maximal ideal of an L-ring L(u, R). That is, we

discussed the maximality of an ideal n in the L -subring p of R . In this paper, we
have introduced the concepts of prime ideal, semiprime ideal and primary ideal of an
L -ring. These concepts provide a systematic development of the theory of ideals in
an L-ring. The concept of the radical of an ideal in an L-ring is also introduced in

this paper. The radical of an ideal of nof an L -ring L(w,R) is denoted by \/ﬁ CItis
proved that an ideal m of p is semiprime if and only if \/ﬁ =n. It is also proved that

for a commutative ring R, the radical \/ﬁ of anidealmofan L -ring L(u,R) is an
ideal of . We have established some results pertaining to the notions of radical of
an ideal of an L -ring which are versions of corresponding results of classical ring
theory. It is proved that every semiprime ideal of an L -ring which is also primary is
a prime ideal of the L -ring. It is also proved that if R is a commutative ring, v is an
ideal of L -ring L(u,R) and mis a semiprime ideal of v then 1 is an ideal of . We

10

BHARAT PUBLICATION



International Journal of Analysis of Basic and Applied Science http://www.bharatpublication.com

(NABAS) 2017, Vol. No. 1, Issue No. I, Oct-Dec ISSN: 2457-0451

have also shown that for a commutative ring R, the radical \/ﬁ of a primary ideal of
nofan L-ring L(w,R) is a prime ideal of p, provided n has sup property.

The concept of minimal prime ideal of an ideal of L -ring is introduced and its
existence is established. It is proved that if an ideal n of an L-ring L(u,R) is
contained in some prime ideal of p, then a minimal prime ideal of 1 exists. We have
also introduced the concept of irreducibility of an ideal of an L -ring. We have shown
that for a chain L, every prime ideal of rank 1 is irreducible under certain

conditions. In classical ring theory, it is well known that if the radical JI of an ideal
| of a ring R is maximal, then | is primary ideal. We have established the
corresponding result in an L-ring.

We have introduced the concept of semiprime radical of an ideal n of pand which

is denoted by S (n) . The semiprime radicals of an ideal n, its radical \/ﬁ , and its
semiprime radical S(n) all coincide. It is also proved that the semiprime radical of
an ideal of an L -ring L(u,R) is the smallest semiprime ideal of p containing the

radical of the ideal.It is shown that for a commutative ring R and a complete
Heyting algebra L, the radical and semiprime radical of an ideal of an L-ring L(u, R)

are identical.
MAXIMAL IDEALS OF AN L-RING

The definition of an ideal of an L-ring allows us to formulate the concept of
maximal ideal of an L-ring L(y,R) in the spirit of classical ring theory. Recall
that a proper ideal I of an ordinary ring R is maximal in R if it is not properly

contained in any other ideal of R.

Definition 2.1. Suppose L is a lattice and R is a ring. A proper ideal n of an L-
ring L(u,R) is said to be a maximal ideal of p if for any ideal 6 of pu, whenever

nclc u, then either 6= nor 0 = p.

The following result is straightforward.

11

BHARAT PUBLICATION



International Journal of Analysis of Basic and Applied Science http://www.bharatpublication.com

(NABAS) 2017, Vol. No. 1, Issue No. I, Oct-Dec ISSN: 2457-0451
Theorem 2.2. Let L be a complete lattice and R be a ring. Let L(1,R) be an L-
ring. Then the intersection of an arbitrary family of ideals of u is an ideal of p.
The above theorem ensures the existence of an ideal which is generated by an

L-subset n contained in p.

Definition 2.3. Let L be a complete lattice and R be a ring. Let L(p,R) be an L-

ring and 7 € L"with < u. Then the smallest ideal of u containing n, that is,
N{Wncvcuv isanideal of u}
is called the ideal of 1 generated by n and is denoted by 7. )

The above concept provides us an extension of a well known result of classical

ring theory.

Theorem 2.4. Let L be a complete lattice and R be a ring. Let L(u,R) be an L-
ring. Then an ideal 0 of u is maximal in u if and only if, (6,x, )= for each L-
point X, of R satisfying 6(x) < a < u(x) , where (0,x,) is the ideal of 1 generated by
ouUx,.

Proof. Suppose 0 is a maximal ideal of pand X, is an L-point of R such that

0(x) < a< u(x). Now

(O(y), if y=x
(OUx,)(Y) = 0(Y) v X, (y) = %La ify = x
Since (OUx,)(x)=a>0(x), 0is properly contained in the ideal (6,%,). Also

(0,x)c u and 0 is maximal ideal of u. Hence (0, x,=u. Conversely, suppose
(0,%,=p for all L-points x, of R satisfying 6(x) < < u(x) . Let n be an ideal of p
such that 93772,“. Then for some aeR, 6(a) <n(a) < (@) . Write 7(a) = «. Now
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(O(x) ifx=a
fUa,)(x)= P
( )X) Jta ifx=a

Thus 6Ua,cn. Hence n=0,a, )ch)=mcp. Therefore n=p. Hence 0 is

maximal ideal of u. v

Corollary 2.5. Let L be a complete chain and R be a ring. Let L(1,R) be an L-
ring. Then an ideal 6 of 1t is maximal in u if and only if (0,x)=u for all

L-points x, of R contained in u but x, 0.

Our next result exhibits that for a general lattice L and an L-ring L(u,R) , if an
ideal n is maximal in pu then either the tips of n and p are identical or the tip of

u covers the tip of n.

Theorem 2.6. Let L be a lattice and R be a ring. Let L(u,R) be an L-ring. If nis a

maximal ideal of u then there is no element t,e L such that n(0) <t,< 1(0) .

Proof. Suppose there exists an element t e L such that p(0)<t,< (0).Define

an L-subset 6:R — L by
00 (t,, x=0
n(x), otherwise

Then ncfdcu and clearly in view of Theorem 2.15, 0 is an ideal of p, which
= #

contradicts the maximality of n. v

Corollary 2.7. Suppose L(u,R) is an L-ring. If nis a maximal ideal of u, then
either n(0) = u(0) or w(0) is cover of n(0).

Corollary 2.8. Suppose L is a dense lattice and L(1,R) is an L-ring. If nis a
maximal ideal of u, then n(0) = u(0).
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Since [0,1] is a dense lattice, the Corollary 3.8, remains valid for ideals of a
fuzzy ring (u,R). From now onwards, L will always denote a chain, unless
otherwise, specifically mentioned. Moreover, for an L-subset n contained in

the L-subset p, the set {(7,1)} denotes the collection of all distinct pairs of

level subsets of nand pin R.

Theorem 2.9. Suppose L(u,R) is an L-ring and 7 is a maximal ideal of u. Then
there is exactly one pair (n,, 1) such that n_ < u and for all other pairs (1, ) ,
0 %~ 0

we have n,= 1.

Proof. Since n is a maximal ideal of u, we have ncu. Thus 54,V tel and
#*

there exists t,e R such that n(x,) < u(x)=t, (say). Hence 7, < # . Suppose there
[ 0

exists (.4 ), 0% 14 ) € {7, 1)}, such that ncyu and ncy  For the sake of

0£ 0 1£ 1

definiteness, assume that t,<t,.

Define an L-subset #:R— L , as follows

[to , Xeny -,
9(X)=jﬂ(x) ) XeR-u
L xen

We show that nclc u. For 4 . u -n, n(x) <t,=0(x) <u(x). For xe(R-x)U7n, ,
#*  # t t0
obviously, 7(x) < 8(x) < u(x) . Thus ncfdc u. Next, since n,c g4, the subset -7,

# 1 1 1

is non-empty. Let x,e 4 -7, Then x,¢7n, and x e t 1, SH < K . Now, either

X,€m, Orx,&m, . Now,if x,en,, then since x,¢n,we have xen-n, and
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hence by the definition of 0, @(x)=n(x)<t<ux).And, if x,en, then
X, € i —1,.- Therefore, 0(x,) =t,<t, < 1(X,) and thus ncldc u.

# #

To show that 0 is an ideal of y, let 6: be a non-empty level subset. We consider

the following cases.

Case (i) t=t,. We show that #=u.Since §cp, we have 6,cn . To show the
reverse inclusion, let X eup, = (pto -1, )Uﬂto- Now, if xep, —mn, then 0O(x)=t,.
Therefore, x €6, and hence p, —n, 6. Also n,_c 6. Consequently, p_ <6, .

Now since the level subset o is an ideal of itself, 6, is an ideal of .

Case (ii) t>t,. We show that 0, =mn,. Clearly n, <6,. Let Xx,€0,. Then
0(X,) 2t>t,. Now by the definition of 0, x,¢u—mn, A and thus x,e(R-p, )Un, .
Suppose, if x,eR-p,, then 0(X)=u(X) <t,. This contradicts that  0(x) > t,.

Thus we must have, X,EMN and by the definition of 6, nx,) =0(x,) >t.

ty
Therefore X,emn, and hence 06,cn,. Consequently 0,=n1,. Since nis an idealof
i, the level subset n, is an ideal of the level subset u:. That is, 0:is an ideal of

the level subset p,.

Case (iii) t < to. We show that 0,=u,. In view of the fact that 6cp, itis
sufficient to show that ucH,. Let  x,¢6,. Then 0(x,)<t<t,. Now by the
definition of 6, we have x,¢p—n,. Therefore x,en, U(R-p,) . Suppose, if

X,emn,, then 6(%)=n(x,)>t,, which is a contradiction. So that X, €R— .,

Again by the definition of 6, we have pu(x,)=06(X,) <t and hence X,¢p,. Thus

uc 0,. Now, since the level subset pu, is an ideal of itself, 6, is an ideal of ,.
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Therefore, each non-empty level subset 6tis an ideal of the level subset p, and

hence, 0 is anideal of p. This contradicts the maximality of nin p.

Consequently, there is exactly one pair (n, ,u) such that N<t and for all
0 0 0 =

0

other pairs (n,,u,), we have n,=u,. v

Now we prove our main theorem.
Theorem 2.10. Suppose L(i,R) is an L-ring and n is a maximal ideal of u with
n(0) = u(0). Then there exists exactly one pair (M, .», ) such that m,_ isa

maximal ideal of p ., and for all other pairs (n,,), we have n= p,.

Proof. By the above theorem, there exists exactly one pair (n, . ) such that

T]tOC;tM . and for all other pairs (n,,u,), we have n,=p,. Since n, cy, , the level

0 + 0

subset p ., 1s non-empty. Hence t,<u(0)=n(0) and thus n, is non-empty. We

show that n, is a maximal ideal of p . If possible, there exists an ideal I of p

such that n,clcy,.

0 %= £ 0

Firstly we prove that Eﬂt, V telmn such that t<t,. Suppose telmn and

t<t,. Then M<mn_  and hence (n,u)=(, M,).By Theorem 3.9, Ne= M-
0 # 0

Therefore, EH L S =1

Define an L-subset 6:R — L, as follows
[t

0(x)= ’ Xel-n,
nx) , X en, UR-1 _
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We show that mncOcu. For x el —n, <y, , by the definition of 6, we have

*  F 0 0

nXx) <t,=0(x) <u(x). Also, for xen, U(R-1), we have n(x)=0(x)<p(x).
Therefore 1139 cu. For x ep -1, by the definition of 6, we have 0(x,)=n(X,).

Since X,ep, and X ézbwl , we have n(x)<(;[ < p()x) . Tlalus T]CGCH?; )

To show that 0 is an ideal of u, we show that each non-empty level subset 0,

is an ideal of the level subset L. Suppose 6, is a non-empty level subset.
Consider the following cases.

Case (i) t=t,. We show that 6 =I. Since 60(x)=t,, V xel-n and
0(X) =n(X) 2t,,V xen, we have 0(x)>t,,V xel.Hence |lc C To the reverse
inclusion, let X,¢ |. Then X, eR-1 and x,¢ n, Therefore by the definition of
0, we have 0(X,)=n(X;) <t, and thus x,¢6,. Since I is an ideal of the level

subset p , 0, is anideal of u,

Case (ii) t>t,. We show that 6,=n,. Since m <6, we have mn,c6,. Suppose
X,€0,. Then 0(x,)>t>t,. Hence by the definition of 6, X, en, U(R-I) and
thus n(x,) =0(X,) >t. So that X,en, and thus 6,c n,. Since n is an ideal of p,

the level subset n, is an ideal of level subset p,. Thus 6tis an ideal of .

Case (iii) t < toand there is no t, € Imn such that t<t <t,. By the definition
of 0, there is no t, € Im6 such that t<t<t,. Thus 6=6, =1. Now we show
that there is no t'eIlmpu such that t<t' <t,. If possible, there exists t'e Imp

such that t<t'<t,. Then TRS Mg Therefore (o) # (M o1, ) - Now by
Theorem 2.9, n,=u, and hence n, clcp, <cpu,=n,. That is, n,cn,.
0%

0% £ 0
17

BHARAT PUBLICATION



International Journal of Analysis of Basic and Applied Science http://www.bharatpublication.com

(NABAS) 2017, Vol. No. 1, Issue No. I, Oct-Dec ISSN: 2457-0451

Consequently there exists t elmn such that t<t <t;,, which is a

contradiction. Therefore, there is no t'elmpu such that t<t' <t, and hence,

is an

p=p.Moreover,as  0=I1 andlis anideal of p, thelevel subset 6

ideal of .

Case (iv) t<t, and there exists t, € Imn such that t<t<t,. We show that
0,=1,. In view of the fact that n <0, it is sufficient to show that 6,cn,. Let
X,€06,. Then 0(x,)>t. But either 6(Xx,)>t, or 6(X,) <t,. Now, if 6(x,)>t,, then
X,€6, =I.As it is shown in the beginning of the proof that for every t;elmn
with t,<t,, we have |C¢n X therefore x,€6, = ET] SN And, if 6(x,)<t,, then
by the definition of 6, we have x,en, U(R-1) and hence n(x,)=0(x,) >t. Thus
X, €M, . Therefore, 6,cn,. Since n is an ideal of u, the level subset 1 is an

ideal of the level subset u:. That is, 6:is an ideal of L,.

Now, 0 is an ideal of p. This contradicts that n is a maximal ideal of p. Thus

n, is a maximal ideal of p,. v
The following result displays the role of the range set Imp of an L-ring L(u,R)
in the construction of maximal ideals of p.

Corollary 2.11. Suppose L(1,R) is an L-ring and n is a maximal ideal of i1 with

n(0) = u(0) . Then there exists t, € Imu such thatn y is a maximal ideal of p ., and
=4 , Vtelmp- {B}
Proof. Since TEM , we have n cp,V tel and there exists X, €R such that

nx, ) <ulx,)=t, (say). Thus Ny, GHy, - Now p, #p, , V telmu—{to}. Thus
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M) =M .p), V  telmp—{t,}. In view of Theorem 2.9, n=n,
Vtelmp-{t}. Again by Theorem 3.10, there exists a pair (m, .k, ) such that
n, is a maximal ideal of p, and for all other pairs (n,u), n=w. Since n=yp,
,Vite Imu—{tq}, we have (n,u )= M,u), V telmp- {t }

Now we show that  (n,n)=(Mm.p), Suppose (Myu)# M .y) . Then by
Theorem 2.10, n,_=up, which is a contradiction. Hence, (911 H )= (nto,u )t

Thus n,_=n_and u,_=u, . Consequently, n, is a maximal ideal of p. v

The converse of the above result is however, not true.
Example 2.12. Let L be a five elements chain, t,<t,<t <t,<t,, and R bethe
ring of integers. Define an L-ring L(u,R) as follows

[t,,  xe(0)

u(x) = To, x €(2) - (0)

t,, X € R—(2%)

Define an L-subset n:R — L by

t , x e (0
P , xJ%—@
nx) ="
t, : X e (2°) - (2°)
Lts , X € R—(2%)
Cleaﬂy ImM:{E’tS!t4}7 HtszR’ “to :(22)’ “t4 =(O), nt3 :R’ nto :(23)7 nt4 :(O)
and n is an ideal of p such thatn | is a maximal ideal of p  ~ with n=p, Vv

teImu- {t}. Define an L-subset 0:R — L as follows
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t , X (0
ﬁ4 , XE&%—@)
0
=3t xe@)-(@)
t X € R—(29)

Ls

The L-subset 0 is an ideal of u such that ncfcu . Hence n is not a maximal
£ #

ideal of p. v

The following theorem shows that for a maximal ideal n of an L-ring L(u,R),
the maximality of a level subset of n in the corresponding level subset of pu

implies the hypothesis of the Corollary 2.11.

Theorem 2.13. Suppose L(u,R) is an L-ring and 7 is a maximal ideal of u such
thatn  is a maximal ideal of n, for some t, elmu. Then n(0) =p(0) Also n.=p,

, Vtelmp-{t}.

Proof. By Corollary 2.7, either n(0)=u(0) or pn(0) is a cover of n(0). Suppose
1(0) is cover of n(0). Define an L-subset 6:R — L , as follows
o0 @ x<O
e X eR —(0)
Now 1n(0) <u(0)=6(0). For xe R—(0), 6(X) =n(X) < u(x) . Thus ngegu . Since N,
is a maximal ideal of n  for some t, €Imu, we have qsu , - Thus there exists

Xo#0 in p, such that x,¢ n,. Hence 0(X,) =n(X,) <t < u(X,) . Thus ncbcp
0 0 #*

#

Now

o, {0
:LT]

——+
IA
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Since n is an ideal of p, n tis an ideal of p,, V t<n(0). Also (0) is an ideal of p,,

V t<u(0). 0is ideal of u. This contradicts that n is a maximal ideal of u. Hence

n(0) =u(0) . By Theorem 2.11, n=1,, vV telmp- {J} Y

In the following theorem we provide sufficient conditions for an ideal n to be
maximal in an L-ring L(u,R).

Theorem 2.14. Suppose L(u,R) is an L-ring and 7 is an ideal of u such that
(i)  m, is amaximal ideal of n, for some t,elmp,

(ti) =4, ¥V telm H_{E };

(iii) tyis coverof t for some t;elmpu,

Then n is a maximal ideal of u.

In order to prove the above theorem, we state the following

Lemma 2.15. Suppose 0,ucl® such that 6cpand 6,=p,V telmp.Then
0=p.

Proof of the Theorem. Suppose 0 is an ideal of p such that TE@ cp. Then
nclcw,V telL.Since n=w,V te Imu—{to}, we have 6=, Vtelm u—{to}.
Now we show that Gto =W, - Since ngeg u, there exists x,eR such that
NX,) <0(Xy) <p(X,) . Write B(x,) =t and u(x,)=t,. Then
nX,) <0(x,) =t <u(x,)=t,. Thus HSM ,» Where t,elmu. Hence by the
hypotheses (i) and (ii), t,=t,. Thus t' <t,. Suppose that t'<t,. Then by the

hypothesis (iii) t' <t <t,, for some t, e Imu. Now, n(X,) <0(X,) =t <t <ty=p(X)

, imply that n, cp,. This contradicts (ii). Thus we must have t'=t,.
1
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Consequently, n(X,)<6(x,)=t,. Hence ntoc;? o SHy,- Since n, is a maximal

ideal of B, and 6. is anideal of p, we have 0 C=H, Thus 0=p,V telmp.

t
Now using Lemma 3.15, we get

0 = u. Hence n is a maximal ideal of pu. v

Consider the following example.

Example 2.16. Let L be a five elements chain t;<t,<t <t,<t, and R be the

ring of integers. Define an L-ring L(u,R) as follows :

Mm=ﬁ4 X 0.
[ts : X eR —(2%)

Define an L-subset n: R —» L by

t , x e (0
|W , XE&%—@
0
n(x) =4y , x e (2°) - (2°)
t , X € R—(29)
Ls
Here n is an ideal of pand Im uz{g, t, t,}. Moreover tois a cover of t,and

t, Imp . It can be shown that n is a maximal ideal of p.v

The above example shows that the conditions of Theorem 2.14 are only

sufficient but not necessary for an ideal n to be maximal ideal of p.
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