THEOREMS RELATED TO IDEALS OF AN L-RING

Gunjan Bansal

Research Scholar, Calorx Teachers' University, Ahmedabad, Gujarat

ABSTRACT

In this paper, we develop a systematic theory for the ideals of an L-ring $L(\mu,R)$. We introduce the concepts of prime ideal, semiprime ideal, primary ideal and radical of an ideal in an L-ring. We prove several results pertaining to these notions which are versions of their counter part in classical ring theory. Besides this we prove that for a commutative ring R, the radical $\sqrt{\eta}$ of a primary ideal η of an L-ring $L(\mu,R)$ is a prime ideal of μ provided η has sup-property. Moreover we introduce the concepts of minimal prime ideal and that of irreducibility of an ideal. Furthermore, we introduce the concept of semiprime radical of ideal in an L-ring. Among various results pertaining to this concept, we prove here that semiprime radicals of an ideal η , its radical $\sqrt{\eta}$, and its semiprime radical $S(\eta)$, all coincide.

INTRODUCTION

We introduced the concept of a maximal ideal of an L-ring $L(\mu, R)$. That is, we discussed the maximality of an ideal η in the L -subring μ of R. In this paper, we have introduced the concepts of prime ideal, semiprime ideal and primary ideal of an L -ring. These concepts provide a systematic development of the theory of ideals in an L-ring. The concept of the radical of an ideal in an L-ring is also introduced in this paper. The radical of an ideal of η of an L -ring $L(\mu, R)$ is denoted by $\sqrt{\eta}$. It is proved that an ideal η of μ is semiprime if and only if $\sqrt{\eta} = \eta$. It is also proved that for a commutative ring R, the radical $\sqrt{\eta}$ of an ideal η of an L-ring $L(\mu, R)$ is an ideal of μ . We have established some results pertaining to the notions of radical of an ideal of an ideal of an L-ring which is also primary is a prime ideal of the L-ring. It is also proved that if R is a commutative ring, ν is an ideal of the L-ring. It is also proved that if R is a noticeleft of the radical of an L-ring which is also primary is a prime ideal of the L-ring. It is also proved that if R is a commutative ring, ν is an ideal of L-ring $L(\mu, R)$ and η is a semiprime ideal of ν then η is an ideal of μ . We

ISSN: 2457-0451

have also shown that for a commutative ring R, the radical $\sqrt{\eta}$ of a primary ideal of η of an L-ring $L(\mu, R)$ is a prime ideal of μ , provided η has sup property.

The concept of minimal prime ideal of an ideal of *L*-ring is introduced and its existence is established. It is proved that if an ideal η of an *L*-ring $L(\mu, R)$ is contained in some prime ideal of μ , then a minimal prime ideal of η exists. We have also introduced the concept of irreducibility of an ideal of an *L*-ring. We have shown that for a chain *L*, every prime ideal of rank 1 is irreducible under certain conditions. In classical ring theory, it is well known that if the radical \sqrt{I} of an ideal *I* of a ring *R* is maximal, then *I* is primary ideal. We have established the corresponding result in an *L*-ring.

We have introduced the concept of semiprime radical of an ideal η of μ and which is denoted by $S(\eta)$. The semiprime radicals of an ideal η , its radical $\sqrt{\eta}$, and its semiprime radical $S(\eta)$ all coincide. It is also proved that the semiprime radical of an ideal of an *L*-ring $L(\mu, R)$ is the smallest semiprime ideal of μ containing the radical of the ideal. It is shown that for a commutative ring R and a complete Heyting algebra L, the radical and semiprime radical of an ideal of an L-ring $L(\mu, R)$ are identical.

MAXIMAL IDEALS OF AN L-RING

The definition of an ideal of an L-ring allows us to formulate the concept of maximal ideal of an L-ring $L(\mu,R)$ in the spirit of classical ring theory. Recall that a proper ideal I of an ordinary ring R is maximal in R if it is not properly contained in any other ideal of R.

Definition 2.1. Suppose L is a lattice and R is a ring. A proper ideal η of an L-ring L(μ ,R) is said to be a *maximal ideal* of μ if for any ideal θ of μ , whenever $\eta \subseteq \theta \subseteq \mu$, then either $\theta = \eta$ or $\theta = \mu$.

The following result is straightforward.

Theorem 2.2. Let L be a complete lattice and R be a ring. Let $L(\mu,R)$ be an Lring. Then the intersection of an arbitrary family of ideals of μ is an ideal of μ .

The above theorem ensures the existence of an ideal which is generated by an L-subset η contained in μ .

Definition 2.3. Let L be a complete lattice and R be a ring. Let $L(\mu,R)$ be an Lring and $\eta \in L^R$ with $\eta \subseteq \mu$. Then the smallest ideal of μ containing η , that is,

 $\bigcap \{ \forall \eta \subseteq v \subseteq \mu, v \text{ is an ideal of } \mu \}$

is called the *ideal of* μ *generated by* η and is denoted by η .

The above concept provides us an extension of a well known result of classical ring theory.

Theorem 2.4. Let *L* be a complete lattice and *R* be a ring. Let $L(\mu, R)$ be an *L*ring. Then an ideal θ of μ is maximal in μ if and only if, $\langle \theta, x_{\alpha} \rangle = \mu$ for each *L*point x_{α} of *R* satisfying $\theta(x) < \alpha \le \mu(x)$, where $\langle \theta, x_{\alpha} \rangle$ is the ideal of μ generated by $\theta \bigcup x_{\alpha}$.

Proof. Suppose θ is a maximal ideal of μ and x_{α} is an L-point of R such that $\theta(x) < \alpha \le \mu(x)$. Now

$$(\theta \bigcup x_{\alpha})(y) = \theta(y) \lor x_{\alpha}(y) = \begin{cases} \theta(y), & \text{if } y \neq x \\ \alpha, & \text{if } y = x \end{cases}$$

Since $(\theta \bigcup x_{\alpha})(x) = \alpha > \theta(x)$, θ is properly contained in the ideal $\langle \theta, x_{\alpha} \rangle$. Also $\langle \theta, x_{\alpha} \rangle = \mu$ and θ is maximal ideal of μ . Hence $\langle \theta, x_{\alpha} \rangle = \mu$. Conversely, suppose $\langle \theta, x_{\alpha} \rangle = \mu$ for all L-points x_{α} of R satisfying $\theta(x) < \alpha \le \mu(x)$. Let η be an ideal of μ such that $\theta \subseteq \eta \subseteq \mu$. Then for some $a \in R$, $\theta(a) < \eta(a) \le \mu(a)$. Write $\eta(a) = \alpha$. Now

http://www.bharatpublication.com

(IJABAS) 2017, Vol. No. 1, Issue No. I, Oct-Dec

ISSN: 2457-0451

 $(\theta \bigcup a_{\alpha})(x) = \begin{cases} \theta(x) &, & \text{if } x \neq a \\ \alpha &, & \text{if } x = a \end{cases}$

Thus $\theta \cup a_{\alpha} \subseteq \eta$. Hence $\mu = \phi, a_{\alpha} \rangle \subseteq \langle \eta \rangle = \eta \subseteq \mu$. Therefore $\eta = \mu$. Hence θ is maximal ideal of μ . v

Corollary 2.5. Let *L* be a complete chain and *R* be a ring. Let $L(\mu, R)$ be an *L*-ring. Then an ideal θ of μ is maximal in μ if and only if $\langle \theta, x_{\alpha} \rangle = \mu$ for all *L*-points x_{α} of *R* contained in μ but $x_{\alpha} \not\subseteq \theta$.

Our next result exhibits that for a general lattice L and an L-ring L(μ ,R), if an ideal η is maximal in μ then either the tips of η and μ are identical or the tip of μ covers the tip of η .

Theorem 2.6. Let *L* be a lattice and *R* be a ring. Let $L(\mu, R)$ be an *L*-ring. If η is a maximal ideal of μ then there is no element $t_0 \in L$ such that $\eta(0) < t_0 < \mu(0)$.

Proof. Suppose there exists an element $t_0 \in L$ such that $\eta(0) < t_0 < \mu(0)$. Define an L-subset $\theta : R \to L$ by

$$\theta(x) = \begin{cases} t_0, & x = 0\\ \eta(x), & otherwise \end{cases}$$

Then $\eta \subset \theta \subset \mu$ and clearly in view of Theorem 2.15, θ is an ideal of μ , which $\neq \neq \neq$

contradicts the maximality of $\eta.\ \nu$

Corollary 2.7. Suppose $L(\mu, R)$ is an L-ring. If η is a maximal ideal of μ , then either $\eta(0) = \mu(0)$ or $\mu(0)$ is cover of $\eta(0)$.

Corollary 2.8. Suppose *L* is a dense lattice and $L(\mu,R)$ is an *L*-ring. If η is a maximal ideal of μ , then $\eta(0) = \mu(0)$.

ISSN: 2457-0451

Since [0,1] is a dense lattice, the Corollary 3.8, remains valid for ideals of a fuzzy ring (μ ,R). From now onwards, L will always denote a chain, unless otherwise, specifically mentioned. Moreover, for an L-subset η contained in the L-subset μ , the set {(η_i , μ_i)} denotes the collection of all distinct pairs of level subsets of η and μ in R.

Theorem 2.9. Suppose $L(\mu, R)$ is an L-ring and η is a maximal ideal of μ . Then there is exactly one pair (η_{t_0}, μ_{t_0}) such that $\eta_{t_0} \subset \mu_{t_0}$ and for all other pairs (η_t, μ_t) , we have $\eta_t = \mu_t$.

Proof. Since η is a maximal ideal of μ , we have $\eta \subset \underset{\neq}{\mu}$. Thus $\eta_t \subseteq \mu_t$, $\forall t \in L$ and there exists $t_0 \in R$ such that $\eta(x_0) < \mu(x_0) = t_0$ (say). Hence $\eta_t \subset \underset{q}{\mu}_{t_0} \subset \underset{q}{\mu}_{t_0}$. Suppose there exists $(\eta_t, \mu_t), (\eta_t, \mu_t) \in \{(\eta_t, \mu_t)\}$, such that $\eta_t \subset \underset{q}{\mu}_{t_0}$ and $\eta_t \subset \underset{q}{\mu}_{t_0}$. For the sake of definiteness, assume that $t_0 < t_1$.

Define an L-subset $\theta: R \to L$, as follows

$$\theta(x) = \begin{cases} t_0 & , & x \in \mu_{t_0} - \eta_{t_0} \\ \mu(x) & , & x \in R - \mu_{t_0} \\ \eta(x) & , & x \in \eta_0 \end{cases}$$

We show that $\eta \subseteq \theta \subseteq \mu$. For $x \in \mu_{t_0} - \eta$, $\eta(x) < t_0 = \theta(x) \le \mu(x)$. For $x \in (R - \mu_{t_0}) \bigcup \eta_{t_0}$, obviously, $\eta(x) \le \theta(x) \le \mu(x)$. Thus $\eta \subseteq \theta \subseteq \mu$. Next, since $\eta_t \subseteq \mu_t$, the subset $\mu_t - \eta_t$ is non-empty. Let $x_0 \in \mu_{t_1} - \eta_t$. Then $x_0 \notin \eta_{t_1}$ and $x_0 \in \mu_{t_1} - \eta_t \subseteq \mu_{t_0} \subseteq \mu_t$. Now, either $x_0 \in \eta_{t_0}$ or $x_0 \notin \eta_{t_0}$. Now, if $x_0 \in \eta_{t_0}$, then since $x_0 \notin \eta_t$, we have $x_0 \in \eta_t - \eta_t$ and

ISSN: 2457-0451

hence by the definition of θ , $\theta(x_0) = \eta(x_0) < t_1 \le \mu(x_0)$. And, if $x_0 \notin \eta_t$, then $x_0 \in \mu_t - \eta_t$. Therefore, $\theta(x_0) = t_0 < t_1 \le \mu(x_0)$ and thus $\eta \subset \theta \subset \mu$.

To show that θ is an ideal of μ , let θ_t be a non-empty level subset. We consider the following cases.

Case (i) $t = t_0$. We show that $\theta_{t_0} = \mu \cdot \int_{t_0} \text{Since} \quad \theta \subseteq \mu$, we have $\theta_{t_0} \subseteq \mu \cdot \int_{t_0} \text{To show the}$ reverse inclusion, let $x \in \mu_{t_0} = (\mu_{t_0} - \eta_{t_0}) \bigcup \eta_{t_0}$. Now, if $x \in \mu_{t_0} - \eta_{t_0}$, then $\theta(x) = t_0$. Therefore, $x \in \theta_{t_0}$ and hence $\mu_{t_0} - \eta_{t_0} \subseteq \theta_{t_0}$. Also $\eta_{t_0} \subseteq \theta_{t_0}$. Consequently, $\mu_{t_0} \subseteq \theta_{t_0}$. Now since the level subset μ_{t_0} is an ideal of itself, θ_{t_0} is an ideal of μ_{t_0} .

Case (ii) $t > t_0$. We show that $\theta_t = \eta_t$. Clearly $\eta_t \subseteq \theta_t$. Let $x_0 \in \theta_t$. Then $\theta(x_0) \ge t > t_0$. Now by the definition of θ , $x_0 \notin \mu_t - \eta_t_0$ and thus $x_0 \in (R - \mu_{t_0}) \cup \eta_{t_0}$. Suppose, if $x_0 \in R - \mu_t_0$ then $\theta(x_0) = \mu(x_0) < t_0$. This contradicts that $\theta(x) > t_0$. Thus we must have, $x_0 \in \eta_{t_0}$ and by the definition of θ , $\eta(x_0) = \theta(x_0) \ge t$. Therefore $x_0 \in \eta_t$ and hence $\theta_t \subseteq \eta_t$. Consequently $\theta_t = \eta_t$. Since η is an ideal of μ , the level subset η_t is an ideal of the level subset μ_t .

Case (iii) $t < t_0$. We show that $\theta_t = \mu_t$. In view of the fact that $\theta \subseteq \mu$, it is sufficient to show that $\mu_t \subseteq \theta_t$. Let $x_0 \notin \theta_t$. Then $\theta(x_0) < t < t_0$. Now by the definition of θ , we have $x_0 \notin \mu_t = \eta_t$. Therefore $x_0 \in \eta_{t_0} \cup (R - \mu_{t_0})$. Suppose, if $x_0 \in \eta_{t_0}$, then $\theta(x_0) = \eta(x_0) \ge t_0$, which is a contradiction. So that $x_0 \in R - \mu_t$. Again by the definition of θ , we have $\mu(x_0) = \theta(x_0) < t$ and hence $x_0 \notin \mu_t$. Thus $\mu_t \subseteq \theta_t$. Now, since the level subset μ_t is an ideal of itself, θ_t is an ideal of μ_t .

ISSN: 2457-0451

Therefore, each non-empty level subset θ_t is an ideal of the level subset μ_t and hence, θ is an ideal of μ . This contradicts the maximality of η in μ . Consequently, there is exactly one pair (η_{t_0}, μ_{t_0}) such that $\eta_{t_0} \subset \mu_{t_0}$ and for all other pairs (η_t, μ_t) , we have $\eta_t = \mu_t$.

Now we prove our main theorem.

Theorem 2.10. Suppose $L(\mu, R)$ is an L-ring and η is a maximal ideal of μ with $\eta(0) = \mu(0)$. Then there exists exactly one pair (η_{t_0}, μ_{t_0}) such that η_{t_0} is a maximal ideal of μ_{t_0} and for all other pairs (η_t, μ_t) , we have $\eta_t = \mu_t$.

Proof. By the above theorem, there exists exactly one pair (η_{t_0}, μ_{t_0}) such that $\eta_{t_0} \subset \mu_{t_0}$ and for all other pairs (η_t, μ_t) , we have $\eta_t = \mu_t$. Since $\eta_t \subset \mu_t$, the level subset μ_{t_0} is non-empty. Hence $t_0 \leq \mu(0) = \eta(0)$ and thus η_{t_0} is non-empty. We show that η_{t_0} is a maximal ideal of μ_{t_0} . If possible, there exists an ideal I of μ_{t_0} such that $\eta_t \subset I \subset \mu_t$.

Firstly we prove that $\underset{\neq}{I \subseteq \eta_{t}}$, $\forall t \in Im \eta$ such that $t < t_{0}$. Suppose $t \in Im \eta$ and $t < t_{0}$. Then $\eta_{0} \subseteq \eta_{t}$ and hence $(\eta_{t}, \mu_{t}) \neq (\eta_{t_{0}}, \mu_{t_{0}})$. By Theorem 3.9, $\eta_{t} = \mu_{t}$. Therefore, $\underset{\neq}{I \subseteq \mu_{t_{0}}} \subseteq \mu_{t} = \eta_{t}$.

Define an L-subset $\theta {:}\, R \to L$, as follows

$$\theta(\mathbf{x}) = \begin{cases} \mathbf{t}_0 & , \\ & \mathbf{x} \in \mathbf{I} - \eta_0 \\ \eta(\mathbf{x}) & , & \mathbf{x} \in \eta_{\mathbf{t}_0} \bigcup (\mathbf{R} - \mathbf{I}) \end{cases}$$

(IJABAS) 2017, Vol. No. 1, Issue No. I, Oct-Dec ISSN: 2457-0451 We show that $\eta \underset{\neq}{\frown} \theta \underset{\neq}{\ominus} \mu$. For $x \in I - \eta_t \underset{\circ}{\subseteq} \mu_t$, by the definition of θ , we have $\eta(x) < t_0 = \theta(x) \le \mu(x)$. Also, for $x \in \eta_{t_0} \bigcup (R - I)$, we have $\eta(x) = \theta(x) \le \mu(x)$. Therefore $\eta \underset{\neq}{\subseteq} \theta \underset{\neq}{\subseteq} \mu$. For $x_0 \in \mu_{t_0} - I$, by the definition of θ , we have $\theta(x_0) = \eta(x_0)$. Since $x_0 \in \mu_{t_0}$ and $x \notin I \underset{\neq}{\ominus} \eta$, we have $\eta(x) < \underset{t_0}{t_0} \le \mu(x)$. Thus $\eta \underset{\neq}{\subseteq} \theta \underset{\neq}{\subseteq} \mu$.

To show that θ is an ideal of μ , we show that each non-empty level subset θ_t is an ideal of the level subset μ_t . Suppose θ_t is a non-empty level subset. Consider the following cases.

Case (i) $t = t_0$. We show that $\theta_{t_0} = I$. Since $\theta(x) = t_0$, $\forall x \in I - \eta_0$ and $\theta(x) = \eta(x) \ge t_0$, $\forall x \in \eta_{t_0}$, we have $\theta(x) \ge t_0$, $\forall x \in I$. Hence $I \subseteq \theta_{t_0}$. To the reverse inclusion, let $x_0 \notin I$. Then $x_0 \in R - I$ and $x_0 \notin \eta_t$. Therefore by the definition of θ , we have $\theta(x_0) = \eta(x_0) < t_0$ and thus $x_0 \notin \theta_t$. Since I is an ideal of the level subset μ_{t_0} , θ_{t_0} is an ideal of μ_{t_0} .

Case (ii) $t > t_0$. We show that $\theta_t = \eta_t$. Since $\eta \subseteq \theta$, we have $\eta_t \subseteq \theta_t$. Suppose $x_0 \in \theta_t$. Then $\theta(x_0) \ge t > t_0$. Hence by the definition of θ , $x_0 \in \eta_{t_0} \bigcup (R-I)$ and thus $\eta(x_0) = \theta(x_0) \ge t$. So that $x_0 \in \eta_t$ and thus $\theta_t \subseteq \eta_t$. Since η is an ideal of μ , the level subset η_t is an ideal of level subset μ_t . Thus θ_t is an ideal of μ_t .

Case (iii) $t < t_0$ and there is no $t_1 \in Im\eta$ such that $t \le t_1 < t_0$. By the definition of θ , there is no $t_1 \in Im\theta$ such that $t \le t_1 < t_0$. Thus $\theta_t = \theta_{t_0} = I$. Now we show that there is no $t' \in Im\mu$ such that $t \le t' < t_0$. If possible, there exists $t' \in Im\mu$ such that $t \le t' < t_0$. If possible, there exists $t' \in Im\mu$ such that $t \le t' < t_0$. Therefore $(\eta_t, \mu_t) \ne (\eta_{t_0}, \mu_{t_0})$. Now by Theorem 2.9, $\eta_t = \mu_t$ and hence $\eta_t \subset I \subset \mu_t \subseteq \mu_t = \eta_t$. That is, $\eta_t \subset \eta_t$.

ISSN: 2457-0451

Consequently there exists $t_1 \in \text{Im }\eta$ such that $t \le t_1 < t_0$, which is a contradiction. Therefore, there is no $t' \in \text{Im }\mu$ such that $t \le t' < t_0$ and hence, $\mu_t = \mu \cdot t_0$. Moreover, as $\theta_t = I$ and I is an ideal of μ_{t_0} , the level subset θ_{t_0} is an ideal of μ_t .

Case (iv) $t < t_0$ and there exists $t_1 \in Im\eta$ such that $t \le t_1 < t_0$. We show that $\theta_t = \eta_t$. In view of the fact that $\eta \subseteq \theta$, it is sufficient to show that $\theta_t \subseteq \eta_t$. Let $x_0 \in \theta_t$. Then $\theta(x_0) \ge t$. But either $\theta(x_0) \ge t_0$ or $\theta(x_0) < t_0$. Now, if $\theta(x_0) \ge t_0$, then $x_0 \in \theta_{t_0} = I$. As it is shown in the beginning of the proof that for every $t_1 \in Im \eta$ with $t_1 < t_0$, we have $I_{\neq} = \eta_{t_1}$, therefore $x_0 \in \theta_{t_0} = I_{\neq} = \eta_t$. And, if $\theta(x_0) < t_0$, then by the definition of θ , we have $x_0 \in \eta_{t_0} \cup (R-I)$ and hence $\eta(x_0) = \theta(x_0) \ge t$. Thus $x_0 \in \eta_t$. Therefore, $\theta_t \subseteq \eta_t$. Since η is an ideal of μ , the level subset η is an ideal of μ_t .

Now, θ is an ideal of μ . This contradicts that η is a maximal ideal of μ . Thus η_{t_0} is a maximal ideal of μ_{t_0} v

The following result displays the role of the range set $Im\mu$ of an L-ring L(μ ,R) in the construction of maximal ideals of μ .

Corollary 2.11. Suppose $L(\mu, R)$ is an L-ring and η is a maximal ideal of μ with $\eta(0) = \mu(0)$. Then there exists $t_0 \in Im\mu$ such that η_{τ_0} is a maximal ideal of μ_{τ_0} and $\eta_t = \mu_t$, $\forall t \in Im \mu - \{t_b\}$.

Proof. Since $\eta \underset{\neq}{\subseteq} \mu$, we have $\eta_t \underset{q}{\subseteq} \mu_t$, $\forall t \in L$ and there exists $x_0 \in R$ such that $\eta(x_0) < \mu(x_0) = t_0$ (say). Thus $\eta_{t_0} \underset{\neq}{\subseteq} \mu_{t_0}$. Now $\mu_t \neq \mu_{t_0}$, $\forall t \in Im\mu - \{t_0\}$. Thus

ISSN: 2457-0451

 $\begin{array}{ll} (\eta_{\iota},\mu_{\iota}) \neq (\eta_{\iota_{0}},\mu_{\iota_{0}}), & \forall \quad t \in Im\mu - \left\{t_{0}\right\}. \quad In \quad view \quad of \quad Theorem \quad 2.9, \quad \eta_{t} = \mu_{t}, \\ \forall \ t \in Im \ \mu - \left\{t_{0}\right\}. \text{ Again by Theorem 3.10, there exists a pair } (\eta_{\iota_{1}},\mu_{\iota_{1}}) \text{ such that} \\ \eta_{\iota_{1}} \text{ is a maximal ideal of } \mu_{\iota_{1}} \text{ and for all other pairs } (\eta_{\iota},\mu_{\iota}), \quad \eta_{\iota} = \mu_{\iota}. \text{ Since } \eta_{\iota} = \mu_{\iota} \\ , \ \forall \ t \in Im\mu - \left\{t_{0}\right\}, \text{ we have } (\eta_{\iota_{1}},\mu_{\iota_{1}}) \neq (\eta_{\iota},\mu_{\iota}), \quad \forall \quad t \in Im \ \mu - \left\{t_{0}\right\}. \end{array}$

Now we show that $(\eta_{t_1}, \mu_{t_1}) = (\eta_{t_0}, \mu_{t_0}) \cdot \text{Suppose}$ $(\eta_{t_1}, \mu_{t_1}) \neq (\eta_{t_0}, \mu_{t_0}) \cdot \text{Then by}$ Theorem 2.10, $\eta_{t_0} = \mu_{t_0}$ which is a contradiction. Hence, $(\eta_{t_1}, \mu_{t_1}) = (\eta_{t_0}, \mu_{t_0}) \cdot \text{Thus}$ Thus $\eta_{t_0} = \eta_{t_1}$ and $\mu_{t_0} = \mu_{t_1}$. Consequently, η_{t_0} is a maximal ideal of μ_{t_0} .

The converse of the above result is however, not true.

Example 2.12. Let L be a five elements chain, $t_3 < t_2 < t_1 < t_0 < t_4$, and R be the ring of integers. Define an L-ring L(μ ,R) as follows

$$\mu(\mathbf{x}) = \begin{cases} t_4, & \mathbf{x} \in (0) \\ t_0, & \mathbf{x} \in (2^2) - (0) \\ t_3, & \mathbf{x} \in \mathbf{R} - (2^2) \end{cases}$$

Define an L-subset $\eta: R \to L$ by

$$\eta(x) = \begin{cases} t_4 & , & x \in (0) \\ t_0 & , & x \in (2^3) - (0) \\ t_2 & , & x \in (2^2) - (2^3) \\ t_3 & , & x \in R - (2^2) \end{cases}$$

Clearly $\operatorname{Im} \mu = \{ \mathfrak{t}, \mathfrak{t}_3, \mathfrak{t}_4 \}, \ \mu_{\mathfrak{t}_3} = R, \ \mu_{\mathfrak{t}_0} = (2^2), \ \mu_{\mathfrak{t}_4} = (0), \ \eta_{\mathfrak{t}_3} = R, \ \eta_{\mathfrak{t}_0} = (2^3), \ \eta_{\mathfrak{t}_4} = (0)$ and η is an ideal of μ such that $\eta_{\mathfrak{t}_0}$ is a maximal ideal of $\mu_{\mathfrak{t}_0}$ with $\eta_{\mathfrak{t}} = \mu_{\mathfrak{t}}, \forall \mathfrak{t} \in \operatorname{Im} \mu - \{ \mathfrak{t} \}.$ Define an L-subset $\theta: R \to L$ as follows

ISSN: 2457-0451

$$\theta(\mathbf{x}) = \begin{cases} t_4 & , & \mathbf{x} \in (0) \\ t_0 & , & \mathbf{x} \in (2^3) - (0) \\ t & , & \mathbf{x} \in (2^2) - (2^3) \\ t_1 & , & \mathbf{x} \in \mathbf{R} - (2^2) \\ \vdots \\ \vdots \\ \vdots \end{cases}$$

The L-subset θ is an ideal of μ such that $\eta {=} \theta {=} \mu$. Hence η is not a maximal ${}_{\neq} {}_{\neq}$ ideal of $\mu. \ \nu$

The following theorem shows that for a maximal ideal η of an L-ring L(μ ,R), the maximality of a level subset of η in the corresponding level subset of μ implies the hypothesis of the Corollary 2.11.

Theorem 2.13. Suppose $L(\mu, R)$ is an L-ring and η is a maximal ideal of μ such that η_{t_0} is a maximal ideal of μ_{t_0} for some $t_0 \in \text{Im}\mu$. Then $\eta(0) = \mu(0)$ Also $\eta_t = \mu_t$, $\forall t \in \text{Im} \mu - \{t_0\}$.

Proof. By Corollary 2.7, either $\eta(0) = \mu(0)$ or $\mu(0)$ is a cover of $\eta(0)$. Suppose $\mu(0)$ is cover of $\eta(0)$. Define an L-subset $\theta: R \to L$, as follows

$$\theta(\mathbf{x}) = \begin{cases} \mu(0) & , & \mathbf{x} \in (0) \\ \eta(\mathbf{x}) & , & \mathbf{x} \in \mathbf{R} - (0) \end{cases}$$

Now $\eta(0) < \mu(0) = \theta(0)$. For $x \in R - (0)$, $\theta(x) = \eta(x) \le \mu(x)$. Thus $\eta \subset \theta \subseteq \mu$. Since η_{t_0} is a maximal ideal of μ_{t_0} for some $t_0 \in Im\mu$, we have $\eta \subset \mu_{t_0} = t_0$. Thus there exists $x_0 \ne 0$ in μ_t such that $x_0 \notin \eta_t$. Hence $\theta(x_0) = \eta(x_0) < t_0 \le \mu(x_0)$. Thus $\eta \subset \theta \subset \mu_{t_0} \neq t_0$.

Now

$$\begin{aligned} \theta_t \\ = \begin{pmatrix} (0) \\ \eta \\ t \end{pmatrix}, \quad t = \mu(0) \\ t \leq \eta(0) \end{aligned}$$

BHARAT PUBLICATION

20

Since η is an ideal of μ , η is an ideal of μ_t , $\forall t \le \eta(0)$. Also (0) is an ideal of μ_t , $\forall t \le \mu(0) . \theta$ is ideal of μ . This contradicts that η is a maximal ideal of μ . Hence $\eta(0) = \mu(0)$. By Theorem 2.11, $\eta_t = \mu_t$, $\forall t \in Im \mu - \{t\}$. ν

In the following theorem we provide sufficient conditions for an ideal η to be maximal in an L-ring L(μ ,R).

Theorem 2.14. Suppose $L(\mu,R)$ is an L-ring and η is an ideal of μ such that

(i) η_{t_0} is a maximal ideal of μ_{t_0} , for some $t_0 \in \text{Im } \mu$,

$$(ii) \qquad \eta_t = \mu_t, \ \forall \ t \in \operatorname{Im} \mu - \{ t \},$$

(iii) t_0 is cover of t_1 for some $t_1 \in Im\mu$,

Then η is a maximal ideal of μ .

In order to prove the above theorem, we state the following

Lemma 2.15. Suppose $\theta, \mu \in L^{\mathbb{R}}$ such that $\theta \subseteq \mu$ and $\theta_t = \mu_t$, $\forall t \in Im \mu$. Then $\theta = \mu$.

Proof of the Theorem. Suppose θ is an ideal of μ such that $\eta_{\neq}^{\frown} \Theta \subseteq \mu$. Then $\eta_t \subseteq \theta_t \subseteq \mu_t$, $\forall t \in L$. Since $\eta_t = \mu_t$, $\forall t \in Im\mu - \{t_0\}$, we have $\theta_t = \mu_t \quad \forall t \in Im \mu - \{t_0\}$. Now we show that $\theta_{t_0} = \mu_{t_0}$. Since $\eta_{\neq}^{\frown} \Theta \subseteq \mu$, there exists $x_0 \in R$ such that $\eta(x_0) < \theta(x_0) \le \mu(x_0)$. Write $\theta(x_0) = t'$ and $\mu(x_0) = t_2$. Then $\eta(x_0) < \theta(x_0) = t' \le \mu(x_0) = t_2$. Thus $\eta_{z\neq}^{\frown} \mu_{t_2}$, where $t_2 \in Im\mu$. Hence by the hypotheses (i) and (ii), $t_2 = t_0$. Thus $t' \le t_0$. Suppose that $t' < t_0$. Then by the hypothesis (iii) $t' \le t_1 < t_0$, for some $t_1 \in Im\mu$. Now, $\eta(x_0) < \theta(x_0) = t' \le t_1 < t_0 = \mu(x_0)$, imply that $\eta_t \subset \mu_t$. This contradicts (ii). Thus we must have $t' = t_0$.

http://www.bharatpublication.com

(IJABAS) 2017, Vol. No. 1, Issue No. I, Oct-Dec ISSN: 2457-0451 Consequently, $\eta(x_0) < \theta(x_0) = t_0$. Hence $\eta_{t_0} \subset \theta_{t_0} \subset \mu_{t_0}$. Since η_{t_0} is a maximal $\text{ideal of } \mu_{\tau_0} \text{ and } \theta_{\tau_0} \text{ is an ideal of } \mu_{\tau_0} \text{ we have } \theta_{\tau_0} = \mu_{\tau_0} \text{ Thus } \theta_{\tau} = \mu_{\tau}, \ \forall \quad t \in \operatorname{Im} \mu.$ 3.15. Now using Lemma we $\theta = \mu$. Hence η is a maximal ideal of μ . v

Consider the following example.

Example 2.16. Let L be a five elements chain $t_3 < t_2 < t_1 < t_0 < t_4$ and R be the ring of integers. Define an L-ring $L(\mu,R)$ as follows :

$$\mu(x) = \begin{cases} t_4 & , & x \in (0) \\ t_4 & , & x \in (2^2) - (0) \\ t_3 & , & x \in R - (2^2) \end{cases}$$

Define an L-subset $\eta: R \to L$ by

$$\eta(\mathbf{x}) = \begin{cases} t_4 & , & \mathbf{x} \in (0) \\ t & , & \mathbf{x} \in (2^5) - (0) \\ t & , & \mathbf{x} \in (2^2) - (2^3) \\ t & , & \mathbf{x} \in \mathbf{R} - (2^2) \\ 3 & & \mathbf{x} \in \mathbf{R} - (2^2) \end{cases}$$

Here η is an ideal of μ and Im $\mu = \{t_3, t_0, t_4\}$. Moreover t_0 is a cover of t₁ and $t_1 \notin Im \mu$. It can be shown that η is a maximal ideal of μ .v

The above example shows that the conditions of Theorem 2.14 are only sufficient but not necessary for an ideal η to be maximal ideal of μ .

REFERENCES

Mordeson, J.N. and Malik, D.S., Fuzzy Commutative Algebra, World 1. Scientific Publishing Co. USA. 1998.

get

ISSN: 2457-0451

- 2. Prajapati, A.S. and Ajmal, N., Maximal ideals of L-subring. ---Communicated.
- 3. Prajapati, A.S. and Ajmal, N., Maximal ideals of L-subringII. ---Communicated.
- 4. Prajapati, A.S. and Ajmal, N., Prime ideal, Semiprime ideal and Primary ideal of an L-subring. ---Communicated.
- 5. Szasz, G. Introduction to Lattice Theory, Academic Press, New York and London, 1963.
- Yu Yandong, Mordeson, J. N. and Cheng, Shih-Chuan, Elements of L-algebra, Lecture notes in Fuzzy Mathematics and Computer Science 1, Center for Research in Fuzzy Mathematics and Computer Science, Creighton University, USA. 1994.